Noninvasive Determination of IDH and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review

被引:60
作者
Bhandari, A. P. [1 ,3 ]
Liong, R. [4 ,6 ]
Koppen, J. [3 ]
Murthy, S. V. [2 ]
Lasocki, A. [5 ,7 ]
机构
[1] James Cook Univ, Dept Anat, 1 James Cook Dr, Townsville, Qld 4814, Australia
[2] James Cook Univ, Coll Med & Dent, Townsville, Qld, Australia
[3] Townsville Univ Hosp, Douglas, Qld, Australia
[4] Royal Brisbane & Womens Hosp, Dept Med Imaging Res Off, Herston, Qld, Australia
[5] Peter MacCallum Canc Ctr, Dept Canc Imaging, Melbourne, Vic, Australia
[6] Griffith Univ, Sch Med, Gold Coast, Qld, Australia
[7] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia
关键词
ARTIFICIAL-INTELLIGENCE; 1P/19Q STATUS; PREDICTION; MUTATION; SURVIVAL; CLASSIFICATION; DIAGNOSIS; FEATURES; QUALITY; IMAGES;
D O I
10.3174/ajnr.A6875
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND: Determination of isocitrate dehydrogenase (IDH) status and, if IDH-mutant, assessing 1p19q codeletion are an important component of diagnosis of World Health Organization grades II/III or lower-grade gliomas. This has led to research into noninvasively correlating imaging features ("radiomics") with genetic status. PURPOSE: Our aim was to perform a diagnostic test accuracy systematic review for classifying IDH and 1p19q status using MR imaging radiomics, to provide future directions for integration into clinical radiology. DATA SOURCES: Ovid (MEDLINE), Scopus, and the Web of Science were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy guidelines. STUDY SELECTION: Fourteen journal articles were selected that included 1655 lower-grade gliomas classified by their IDH and/or 1p19q status from MR imaging radiomic features. DATA ANALYSIS: For each article, the classification of IDH and/or 1p19q status using MR imaging radiomics was evaluated using the area under curve or descriptive statistics. Quality assessment was performed with the Quality Assessment of Diagnostic Accuracy Studies 2 tool and the radiomics quality score. DATA SYNTHESIS: The best classifier of IDH status was with conventional radiomics in combination with convolutional neural network-derived features (area under the curve = 0.95, 94.4% sensitivity, 86.7% specificity). Optimal classification of 1p19q status occurred with texture-based radiomics (area under the curve = 0.96, 90% sensitivity, 89% specificity). LIMITATIONS: A meta-analysis showed high heterogeneity due to the uniqueness of radiomic pipelines. CONCLUSIONS: Radiogenomics is a potential alternative to standard invasive biopsy techniques for determination of IDH and 1p19q status in lower-grade gliomas but requires translational research for clinical uptake.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 59 条
[1]  
Akay Ali, 2019, Asian J Neurosurg, V14, P90, DOI 10.4103/ajns.AJNS_81_17
[2]  
[Anonymous], IDENTIFYING BEST MAC
[3]  
[Anonymous], 2011, Statistical methods in diagnostic medicine
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   Impact of artificial intelligence on radiology: a EuroAIM survey among members of the European Society of Radiology [J].
Brkljacic, Boris ;
Derchi, Lorenzo E. ;
Hamm, Bernd ;
Fuchsjager, Michael ;
Krestin, Gabriel ;
Dewey, Marc ;
Parizel, Paul ;
Clark, Jonathan ;
Codari, Marina ;
Melazzini, Luca ;
Morozov, Sergey P. ;
van Kuijk, Cornelis C. ;
Sconfienza, Luca M. ;
Sardanelli, Francesco .
INSIGHTS INTO IMAGING, 2019, 10 (01)
[6]   The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study [J].
Broen, Martinus P. G. ;
Smits, Marion ;
Wijnenga, Maarten M. J. ;
Dubbink, Hendrikus J. ;
Anten, Monique H. M. E. ;
Schijns, Olaf E. M. G. ;
Beckervordersandforth, Jan ;
Postma, Alida A. ;
van den Bent, Martin J. .
NEURO-ONCOLOGY, 2018, 20 (10) :1393-1399
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P735, DOI [10.7326/L15-5093-2, 10.7326/L15-5093]
[8]   Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status [J].
Delfanti, Rachel L. ;
Piccioni, David E. ;
Handwerker, Jason ;
Bahrami, Naeim ;
Krishnan, AnithaPriya ;
Karunamuni, Roshan ;
Hattangadi-Gluth, Jona A. ;
Seibert, Tyler M. ;
Srikant, Ashwin ;
Jones, Karra A. ;
Snyder, Vivian S. ;
Dale, Anders M. ;
White, Nathan S. ;
McDonald, Carrie R. ;
Farid, Nikdokht .
JOURNAL OF NEURO-ONCOLOGY, 2017, 135 (03) :601-609
[9]  
Friedmen LM, 2010, FUNDAMENTALS OF CLINICAL TRIALS, FOURTH EDITION, P1
[10]   Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network [J].
Fukuma, Ryohei ;
Yanagisawa, Takufumi ;
Kinoshita, Manabu ;
Shinozaki, Takashi ;
Arita, Hideyuki ;
Kawaguchi, Atsushi ;
Takahashi, Masamichi ;
Narita, Yoshitaka ;
Terakawa, Yuzo ;
Tsuyuguchi, Naohiro ;
Okita, Yoshiko ;
Nonaka, Masahiro ;
Moriuchi, Shusuke ;
Takagaki, Masatoshi ;
Fujimoto, Yasunori ;
Fukai, Junya ;
Izumoto, Shuichi ;
Ishibashi, Kenichi ;
Nakajima, Yoshikazu ;
Shofuda, Tomoko ;
Kanematsu, Daisuke ;
Yoshioka, Ema ;
Kodama, Yoshinori ;
Mano, Masayuki ;
Mori, Kanji ;
Ichimura, Koichi ;
Kanemura, Yonehiro ;
Kishima, Haruhiko .
SCIENTIFIC REPORTS, 2019, 9 (1)