Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy

被引:72
作者
Gong, Chen [1 ]
Pu, Shengda D. [1 ]
Gao, Xiangwen [1 ]
Yang, Sixie [1 ]
Liu, Junliang [1 ]
Ning, Ziyang [1 ]
Rees, Gregory J. [1 ]
Capone, Isaac [1 ]
Pi, Liquan [1 ]
Liu, Boyang [1 ,2 ]
Hartley, Gareth O. [1 ,2 ]
Fawdon, Jack [1 ]
Luo, Jun [3 ,4 ]
Pasta, Mauro [1 ]
Grovenor, Chris R. M. [1 ]
Bruce, Peter G. [1 ,2 ,5 ,6 ]
Robertson, Alex W. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, South Parks Rd, Oxford OX1 3QZ, England
[3] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Ctr Electron Microscopy, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[4] Tianjin Univ Technol, Tianjin Key Lab Adv Funct Porous Mat, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[5] Henry Royce Inst, Parks Rd, Oxford OX1 3PH, England
[6] Quad One, Faraday Inst, Becquerel Ave,Harwell Campus, Didcot OX11 0RA, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
batteries; dendrites; in situ TEM; Li electroplating; metal anodes; LITHIUM METAL ANODE; FLUOROETHYLENE CARBONATE; NANOSTRUCTURE; PERFORMANCE; INTERFACES; DENDRITES;
D O I
10.1002/aenm.202003118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid electrolyte interphase (SEI), a complex layer that forms over the surface of electrodes exposed to battery electrolyte, has a central influence on the structural evolution of the electrode during battery operation. For lithium metallic anodes, tailoring this SEI is regarded as one of the most effective avenues for ensuring consistent cycling behavior, and thus practical efficiencies. While fluoride-rich interphases in particular seem beneficial, how they alter the structural dynamics of lithium plating and stripping to promote efficiency remains only partly understood. Here, operando liquid-cell transmission electron microscopy is used to investigate the nanoscale structural evolution of lithium electrodeposition and dissolution at the electrode surface across fluoride-poor and fluoride-rich interphases. The in situ imaging of lithium cycling reveals that a fluoride-rich SEI yields a denser Li structure that is particularly amenable to uniform stripping, thus suppressing lithium detachment and isolation. By combination with quantitative composition analysis via mass spectrometry, it is identified that the fluoride-rich SEI suppresses overall lithium loss through drastically reducing the quantity of dead Li formation and preventing electrolyte decomposition. These findings highlight the importance of appropriately tailoring the SEI for facilitating consistent and uniform lithium dissolution, and its potent role in governing the plated lithium's structure.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes
    Brown, Zachary L.
    Jurng, Sunhyung
    Cao Cuong Nguyen
    Lucht, Brett L.
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (07): : 3057 - 3062
  • [2] A Review of Solid Electrolyte Interphases on Lithium Metal Anode
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Wei, Fei
    Zhang, Ji-Guang
    Zhang, Qiang
    [J]. ADVANCED SCIENCE, 2016, 3 (03)
  • [3] Radiation damage in the TEM and SEM
    Egerton, RF
    Li, P
    Malac, M
    [J]. MICRON, 2004, 35 (06) : 399 - 409
  • [4] Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
    Fan, Xiulin
    Chen, Long
    Borodin, Oleg
    Ji, Xiao
    Chen, Ji
    Hou, Singyuk
    Deng, Tao
    Zheng, Jing
    Yang, Chongyin
    Liou, Sz-Chian
    Amine, Khalil
    Xu, Kang
    Wang, Chunsheng
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (08) : 715 - +
  • [5] Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
    Fan, Xiulin
    Chen, Long
    Ji, Xiao
    Deng, Tao
    Hou, Singyuk
    Chen, Ji
    Zheng, Jing
    Wang, Fei
    Jiang, Jianjun
    Xu, Kang
    Wang, Chunsheng
    [J]. CHEM, 2018, 4 (01): : 174 - 185
  • [6] Key Issues Hindering a Practical Lithium-Metal Anode
    Fang, Chengcheng
    Wang, Xuefeng
    Meng, Ying Shirley
    [J]. TRENDS IN CHEMISTRY, 2019, 1 (02): : 152 - 158
  • [7] Quantifying inactive lithium in lithium metal batteries
    Fang, Chengcheng
    Li, Jinxing
    Zhang, Minghao
    Zhang, Yihui
    Yang, Fan
    Lee, Jungwoo Z.
    Lee, Min-Han
    Alvarado, Judith
    Schroeder, Marshall A.
    Yang, Yangyuchen
    Lu, Bingyu
    Williams, Nicholas
    Ceja, Miguel
    Yang, Li
    Cai, Mei
    Gu, Jing
    Xu, Kang
    Wang, Xuefeng
    Meng, Ying Shirley
    [J]. NATURE, 2019, 572 (7770) : 511 - +
  • [8] Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface
    Gao, Yue
    Rojas, Tomas
    Wang, Ke
    Liu, Shuai
    Wang, Daiwei
    Chen, Tianhang
    Wang, Haiying
    Ngo, Anh T.
    Wang, Donghai
    [J]. NATURE ENERGY, 2020, 5 (07) : 534 - 542
  • [9] Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy
    Gong, Chen
    Pu, Shengda D.
    Gao, Xiangwen
    Yang, Sixie
    Liu, Junliang
    Ning, Ziyang
    Rees, Gregory J.
    Capone, Isaac
    Pi, Liquan
    Liu, Boyang
    Hartley, Gareth O.
    Fawdon, Jack
    Luo, Jun
    Pasta, Mauro
    Grovenor, Chris R. M.
    Bruce, Peter G.
    Robertson, Alex W.
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (10)
  • [10] Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry
    Gueguen, Aurelie
    Streich, Daniel
    He, Minglong
    Mendez, Manuel
    Chesneau, Frederick F.
    Novak, Petr
    Berg, Erik J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (06) : A1095 - A1100