Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants

被引:3
作者
Yoo, Mung Hwa
Kwon, Youn Jung
Son, Ki-Cheol [1 ]
Kays, Stanley J.
机构
[1] Konkuk Univ, Dept Environm Sci, Seoul 143701, South Korea
[2] Univ Georgia, Dept Hort, Athens, GA 30602 USA
关键词
benzene; toluene; volatile organic compounds; stress; injury; indoor pollutants; phytoremediation; detoxification;
D O I
暂无
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Foliage plants of Hedera helix L. (english ivy), Spathiphyllum wallisiiRegal (peace lily), Syngoniumpodophyllum Schott. (nephthytis), and Cissus rhombifolia Vahl. (grape ivy) were evaluated for their ability to remove two indoor volatile organic air pollutants, benzene and toluene. Removal was monitored when the aerial portion of plants was exposed singly to 1 mu(LL-1)-L-. or to 0.5 mu(LL-1)-L-. of each gas in a closed environment over 6-hour periods during the day and the night. Selected physiological processes were assessed before and immediately after treatment to determine the effect of the gases on the plants. The effectiveness of plants in the removal of air pollutant(s) varied with species, time of day, and whether the gases were present singly or as a mixture. When exposed to a single gas, S. wallisii, S. podophyllum, and H. helix displayed higher removal efficiencies (ng(.)m(-3.)h(-1.)cm(-2) leaf area) of either gas than C. rhombifolia during the day. The efficiency of removal changed when both gases were present; H. helix was substantially more effective in the removal of either benzene or toluene than the other species, with the removal of toluene more than double that of benzene. When exposed singly, the removal of both compounds was generally higher during the day than during the night for all species; however, when present simultaneously, H. helix removal efficiency during the night was similar to the day indicating that stomatal diffusion for english ivy was not a major factor. The results indicated an interaction between gases in uptake by the plant, the presence of different avenues for uptake, and the response of a single gas was not necessarily indicative of the response when other gases are present. Changes in the rates of photosynthesis, stomatal conductance, and transpiration before and after exposure indicated that the volatiles adversely affected the plants and the effects were not consistent across species and gases. Deleterious effects of volatile pollutants on indoor plants may be critical in their efficacy in improving indoor air quality and warrant further study.
引用
收藏
页码:452 / 458
页数:7
相关论文
共 34 条
  • [1] *AM C GOV IND HYG, 1995, AM C GOVT IND HYG CI
  • [2] Ando M., 2002, KOKURITSU IYAKUHIN S, V120, P6
  • [3] On the study of a sick building: the case of Athens Air Traffic Control Tower
    Assimakopoulos, VD
    Helmis, CG
    [J]. ENERGY AND BUILDINGS, 2004, 36 (01) : 15 - 22
  • [4] Brown S, 1997, CHEM AUSTR, V64, P10
  • [5] CONCENTRATIONS OF VOLATILE ORGANIC-COMPOUNDS IN INDOOR AIR - A REVIEW
    BROWN, SK
    SIM, MR
    ABRAMSON, MJ
    GRAY, CN
    [J]. INDOOR AIR-INTERNATIONAL JOURNAL OF INDOOR AIR QUALITY AND CLIMATE, 1994, 4 (02): : 123 - 134
  • [6] Studies on the decontamination of air by plants
    Cornejo, JJ
    Muñoz, FG
    Ma, CY
    Stewart, AJ
    [J]. ECOTOXICOLOGY, 1999, 8 (04) : 311 - 320
  • [7] The biofiltration of indoor air: Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene
    Darlington, AB
    Dat, JF
    Dixon, MA
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (01) : 240 - 246
  • [8] THE EFFECT OF AIR-POLLUTANTS ON PHYSIOLOGICAL PROCESSES IN PLANTS
    DARRALL, NM
    [J]. PLANT CELL AND ENVIRONMENT, 1989, 12 (01) : 1 - 30
  • [9] Elevated CO2 reduces O-3 flux and O-3-induced yield losses in soybeans: Possible implications for elevated CO2 studies
    Fiscus, EL
    Reid, CD
    Miller, JE
    Heagle, AS
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (307) : 307 - 313
  • [10] Godish T., 1995, SICK BUILDING DEFINI