Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints

被引:71
作者
Ceng, L. C. [1 ]
Petrusel, A. [2 ,3 ]
Qin, X. [4 ]
Yao, J. C. [5 ,6 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[3] Acad Romanian Scientists, Bucharest, Romania
[4] Natl Yunlin Univ Sci & Technol, Gen Educ Ctr, Touliu, Taiwan
[5] China Med Univ Hosp, Res Ctr Interneural Comp, Taichung, Taiwan
[6] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung, Taiwan
关键词
Subgradient extragradient approach; variational inequality problem; asymptotically nonexpansive operator; fixed point; STRONG-CONVERGENCE; APPROXIMATION; OPERATORS;
D O I
10.1080/02331934.2020.1858832
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article proposes two general inertial algorithms with line-search process for finding a solution of a variational inequality problem with fixed-point constraints via a subgradient-extragradient approach. Common solution theorems are obtained in Hilbert spaces.
引用
收藏
页码:1337 / 1358
页数:22
相关论文
共 33 条
[1]   Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules [J].
Cai, Gang ;
Shehu, Yekini ;
Iyiola, Olaniyi Samuel .
NUMERICAL ALGORITHMS, 2018, 77 (02) :535-558
[2]   A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
FIXED POINT THEORY, 2020, 21 (01) :93-108
[3]  
Ceng L.-C., 2020, J APPL NUMER OPTIM, V2, P213, DOI DOI 10.23952/jano.2.2020.2.07
[4]  
CENG LC, 2019, OPTIMIZATION 0727, DOI DOI 10.1080/02331934.2019.1647203
[5]   The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces [J].
Ceng, Lu-Chuan ;
Xu, Hong-Kun ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) :1402-1412
[6]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[7]   ITERATIVE ALGORITHMS FOR SPLIT VARIATIONAL INEQUALITIES AND GENERALIZED SPLIT FEASIBILITY PROBLEMS WITH APPLICATIONS [J].
Chidume, Charles E. ;
Nnakwe, Monday O. .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2019, 3 (02) :127-140
[8]  
Cho SJ, 2011, MOD PATH, V24, p364A
[9]   STRONG CONVERGENCE ANALYSIS OF A HYBRID ALGORITHM FOR NONLINEAR OPERATORS IN A BANACH SPACE [J].
Cho, Sun Young .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01) :19-31
[10]   Convergence analysis of an iterative algorithm for monotone operators [J].
Cho, Sun Young ;
Li, Wenling ;
Kang, Shin Min .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,