The Kazhdan-Lusztig polynomials of uniform matroids

被引:10
作者
Gao, Alice L. L. [1 ,2 ]
Lu, Linyuan [3 ]
Xie, Matthew H. Y. [1 ]
Yang, Arthur L. B. [1 ]
Zhang, Philip B. [4 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[4] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
基金
美国国家科学基金会;
关键词
Kazhdan-Lusztig polynomial; Uniform matroid; Z-polynomial; Zeilberger's algorithm; Real-rootedness;
D O I
10.1016/j.aam.2020.102117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias et al. (2016) [4]. Let U-m,U-d denote the uniform matroid of rank d on a set of m d elements. Gedeon et al. (2017) [7] pointed out that they can derive an explicit formula of the Kazhdan-Lusztig polynomials of U-m,U-d using equivariant Kazhdan-Lusztig polynomials. In this paper we give an alternative explicit formula, which allows us to prove the real-rootedness of the Kazhdan-Lusztig polynomials of U-m,U-d for 2 <= m <= 15 and all d's. The case m = 1 was previously proved by Gedeon et al. (2017) [8]. We further determine the Z-polynomials of all U-m,U-d's and prove the real-rootedness of the Z-polynomials of U(m,d )for 2 <= m <= 15 and all d's. Our formula also enables us to give an alternative proof of Gedeon, Proudfoot, and Young's formula for the Kazhdan-Lusztig polynomials of U-m,U-d's without using the equivariant Kazhdan-Lusztig polynomials. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 17 条
[1]  
Craven T, 2004, ADV COMP ANAL APPL, V3, P131
[2]   LOCATION OF ZEROS .1. REAL POLYNOMIALS AND ENTIRE-FUNCTIONS [J].
CRAVEN, T ;
CSORDAS, G .
ILLINOIS JOURNAL OF MATHEMATICS, 1983, 27 (02) :244-278
[3]   INTERSECTIONS OF REAL CLOSED FIELDS [J].
CRAVEN, TC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (02) :431-440
[4]   The Kazhdan-Lusztig polynomial of a matroid [J].
Elias, Ben ;
Proudfoot, Nicholas ;
Wakefield, Max .
ADVANCES IN MATHEMATICS, 2016, 299 :36-70
[5]  
Fulton W., 2013, Representation Theory: A First Course, V129
[6]   The equivariant Kazhdan-Lusztig polynomial of a matroid [J].
Gedeon, Katie ;
Proudfoot, Nicholas ;
Young, Benjamin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 150 :267-294
[7]  
Gedeon Katie, 2017, SEM LOTHAR COMBIN B, V78 B, P12
[8]  
Gedeon KR, 2017, ELECTRON J COMB, V24
[9]  
Hoggart V E, 1973, FIBONACCI QUART, V11, P271
[10]   Stirling numbers in braid matroid Kazhdan-Lusztig polynomials [J].
Karn, Trevor K. ;
Wakefield, Max D. .
ADVANCES IN APPLIED MATHEMATICS, 2019, 103 :1-12