Detecting QTLs for plant architecture traits in cucumber (Cucumis sativus L.)

被引:9
|
作者
Li, Xiao Zun [1 ]
Yuan, Xiao Jun [1 ]
Jiang, Su [1 ]
Pan, Jun Song [1 ]
Deng, Si Li [1 ]
Wang, Gang [1 ]
Le He, Huan [1 ]
Wu, Ai Zhong [1 ]
Zhu, Li Huang [2 ]
Koba, Takato [3 ]
Cai, Run [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
[3] Chiba Univ, Grad Sch Hort, Lab Genet & Plant Breeding, Chiba 2718510, Japan
关键词
cucumber; QTL; molecular marker; linkage map; plant architecture; marker-assisted selection;
D O I
10.1270/jsbbs.58.453
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To improve the efficiency of breeding Cucumber ill China, we previously mapped QTL for most fruit- and flower-related traits of this species. Here, we mapped QTLs for six plant architecture traits including lateral branch number (LBN), lateral branch total length (LBTL), main-stern length (MSL), internode length (TNL), main-stem diameter (MSD), and petiole length (PL) were detected in greenhouse environments. In total, 14 QTLs were identified for the six traits (LBN, 3; LBTL, 2; MSL, 3; INL, 2; MSD, 2; and PL, 2) with additive heritability of individual QTL, ranging from 1.6% to 29.5%. Five QTLs for four traits (LBN, LBTL, MSL, and INL) were observed to have significant (P <= 0.05) QTL x environment interaction effects. The broad-sense heritability for the six traits ranged from 8.5% to 47.0%. The QTL information presented in this research, together with the data in Our previous study on the fruit- and flower-related traits, will facilitate the breeding of elite cucumber cultivars by marker-assisted selection in China.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 50 条
  • [21] The Effect of Salicylic Acid on Physiological and Morphological Traits of Cucumber (Cucumis sativus L. cv. Dream)
    Abbasi, Fereshteh
    Khaleghi, Alireza
    Khadivi, Ali
    GESUNDE PFLANZEN, 2020, 72 (02): : 155 - 162
  • [22] Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.)
    Vasudevan, A.
    Selvaraj, N.
    Ganapathi, A.
    Kasthurirengan, S.
    Anbazhagan, V. Ramesh
    Manickavasagam, M.
    Choi, C. W.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2008, 44 (04) : 300 - 306
  • [23] A chromosome-scale genome assembly of cucumber (Cucumis sativus L.)
    Li, Qing
    Li, Hongbo
    Huang, Wu
    Xu, Yuanchao
    Zhou, Qian
    Wang, Shenhao
    Ruan, Jue
    Huang, Sanwen
    Zhang, Zhonghua
    GIGASCIENCE, 2019, 8 (06):
  • [24] An Extended Intervarietal Microsatellite Linkage Map of Cucumber, Cucumis sativus L.
    Weng, Yiqun
    Johnson, Shanna
    Staub, Jack E.
    Huang, Sanwen
    HORTSCIENCE, 2010, 45 (06) : 882 - 886
  • [25] The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth
    Alsadon, Abdullah
    Al-Helal, Ibrahim
    Ibrahim, Abdullah
    Abdel-Ghany, Ahmed
    Al-Zaharani, Saeed
    Ashour, Taha
    ECOLOGICAL ENGINEERING, 2016, 87 : 305 - 312
  • [26] Morphological and Genetic Diversity of Cucumber (Cucumis sativus L.) Fruit Development
    Grumet, Rebecca
    Lin, Ying-Chen
    Rett-Cadman, Stephanie
    Malik, Ajaz
    PLANTS-BASEL, 2023, 12 (01):
  • [27] Polymorphom of sexually different cucumber (Cucumis sativus L.) NIL lines
    Przybecki, Z
    Kowalczyk, ME
    Witkowicz, J
    Filipecki, M
    Siedlecka, E
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2004, 9 (4B) : 919 - 933
  • [28] QTL molecular marker location of powdery mildew resistance in cucumber (Cucumis sativus L.)
    LongZhou Liu
    Run Cai
    XiaoJun Yuan
    HuanLe He
    JunSong Pan
    Science in China Series C: Life Sciences, 2008, 51 : 1003 - 1008
  • [29] A single recessive gene controls fragrance in cucumber (Cucumis sativus L.)
    P. PRAMNOI
    P. SOMTA
    S. CHANKAEW
    R. JUWATTANASOMRAN
    P. SRINIVES
    Journal of Genetics, 2013, 92 : 147 - 149
  • [30] Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.)
    Vasudevan, A.
    Selvaraj, N.
    Ganapathi, A.
    Choi, C.W.
    American Journal of Biochemistry and Biotechnology, 2007, 3 (01) : 24 - 32