Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories

被引:45
作者
Nikshych, Dmitri [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2008年 / 14卷 / 01期
关键词
Fusion category; group-theoretical Hopf algebra; equivariantization;
D O I
10.1007/s00029-008-0060-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an action of a finite group G on a fusion category C we give a criterion for the category of G-equivariant objects in C to be group-theoretical, i.e., to be categorically Morita equivalent to a category of group-graded vector spaces. We use this criterion to answer affirmatively the question about existence of non-group-theoretical semisimple Hopf algebras asked by P. Etingof, V. Ostrik, and the author in [7]. Namely, we show that certain Z/2Z-equivariantizations of fusion categories constructed by D. Tambara and S. Yamagami [26] are equivalent to representation categories of non-group-theoretical semisimple Hopf algebras. We describe these Hopf algebras as extensions and show that they are upper and lower semisolvable.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 27 条
[11]  
Kac G.I., 1966, T MOSCOW MATH SOC, V15, P251
[12]  
Kassel C., 1995, GRADUATE TEXTS MATH, V155, DOI DOI 10.1007/978-1-4612-0783-2
[13]   Some further classification results on semisimple Hopf algebras [J].
Masuoka, A .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (01) :307-329
[14]   Irreducible representations of crossed products [J].
Montgomery, S ;
Witherspoon, SJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (03) :315-326
[15]  
MONTGOMERY S, 1993, CBMS REG C SER MATH, V82
[16]   Enriched string-net models and their excitations [J].
Green, David ;
Huston, Peter ;
Kawagoe, Kyle ;
Penneys, David ;
Poudel, Anup ;
Sanford, Sean .
QUANTUM, 2024, 8
[17]   Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups [J].
Naidu, Deepak ;
Nikshych, Dmitri .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (03) :845-872
[18]   Categorical morita equivalence for group-theoretical categories [J].
Naidu, Deepak .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (11) :3544-3565
[19]   On group theoretical Hopf algebras and exact factorizations of finite groups [J].
Natale, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :199-211
[20]  
Ostrik V, 2003, INT MATH RES NOTICES, V2003, P1507