Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories

被引:45
作者
Nikshych, Dmitri [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2008年 / 14卷 / 01期
关键词
Fusion category; group-theoretical Hopf algebra; equivariantization;
D O I
10.1007/s00029-008-0060-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an action of a finite group G on a fusion category C we give a criterion for the category of G-equivariant objects in C to be group-theoretical, i.e., to be categorically Morita equivalent to a category of group-graded vector spaces. We use this criterion to answer affirmatively the question about existence of non-group-theoretical semisimple Hopf algebras asked by P. Etingof, V. Ostrik, and the author in [7]. Namely, we show that certain Z/2Z-equivariantizations of fusion categories constructed by D. Tambara and S. Yamagami [26] are equivalent to representation categories of non-group-theoretical semisimple Hopf algebras. We describe these Hopf algebras as extensions and show that they are upper and lower semisolvable.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 27 条
[1]   Another realization of the category of modules over the small quantum group [J].
Arkhipov, S ;
Gaitsgory, D .
ADVANCES IN MATHEMATICS, 2003, 173 (01) :114-143
[2]  
Bakalov B., 2001, LECT TENSOR CATEGORI
[3]  
Deligne P., 1990, PROGR MATH, V87, P111
[4]  
DRINFELD V, ARXIV07040195V2MATHQ
[5]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[6]  
Etingof P, 2004, INT MATH RES NOTICES, V2004, P3041
[7]   The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field [J].
Etingof, P ;
Gelaki, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (05) :223-234
[8]  
Frohlich J, 1993, LECT NOTES MATH, V1542
[9]  
GAITSGORY D, MATHAG0507192
[10]  
GELAKI S, ARXIV07094326MATHQA