Terminal-pairability in complete bipartite graphs with non-bipartite demands Edge-disjoint paths in complete bipartite graphs

被引:0
作者
Colucci, Lucas [2 ]
Erdos, Peter L. [1 ]
Gyori, Ervin [1 ,2 ]
Mezei, Tamas Robert [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Cent European Univ, Dept Math & Its Applicat, Nador U 9, H-1051 Budapest, Hungary
关键词
Edge-disjoint paths; Terminal-pairability; Complete bipartite graph;
D O I
10.1016/j.tcs.2018.12.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the terminal-pairability problem in the case when the base graph is a complete bipartite graph, and the demand graph is a (not necessarily bipartite) multigraph on the same vertex set. In computer science, this problem is known as the edge-disjoint paths problem. We improve the lower bound on the maximum value of Delta (D) which still guarantees that the demand graph D has a realization in K-n,K-n. We also solve the extremal problem on the number of edges, i.e., we determine the maximum number of edges which guarantees that a demand graph is realizable in K-n,K-n. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 34 条
  • [1] Abu-Khzam FN, 2003, LECT NOTES COMPUT SC, V2697, P394
  • [2] Finding disjoint paths in expanders deterministically and online
    Alon, Noga
    Capalbo, Michael
    [J]. 48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 518 - +
  • [3] Length 3 Edge-Disjoint Paths Is NP-Hard
    Alpert, Hannah
    Iglesias, Jennifer
    [J]. COMPUTATIONAL COMPLEXITY, 2012, 21 (03) : 511 - 513
  • [4] [Anonymous], COMBINATORICS GRAPH
  • [5] [Anonymous], ARXIV151200513V1
  • [6] [Anonymous], DISCRETE APPL MATH
  • [7] [Anonymous], J COMBIN MATH UNPUB
  • [8] Edge-coloring bipartite multigraphs in O(ElogD) time
    Cole, R
    Ost, K
    Schirra, S
    [J]. COMBINATORICA, 2001, 21 (01) : 5 - 12
  • [9] Constructing Graphs with No Immersion of Large Complete Graphs
    Collins, Karen L.
    Heenehan, Megan E.
    [J]. JOURNAL OF GRAPH THEORY, 2014, 77 (01) : 1 - 18
  • [10] NETWORKS COMMUNICATING FOR EACH PAIRING OF TERMINALS
    CSABA, L
    FAUDREE, RJ
    GYARFAS, A
    LEHEL, J
    SCHELP, RH
    [J]. NETWORKS, 1992, 22 (07) : 615 - 626