Hyers-Ulam-Rassias Stability of a Quadratic and Additive Functional Equation in Quasi-Banach Spaces

被引:18
作者
Moradlou, Fridoun [1 ]
Vaezi, Hamid [2 ]
Eskandani, G. Zamani [2 ]
机构
[1] Sahand Univ Technol, Dept Math, Tabriz, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Hyers-Ulam-Rassias stability; quadratic function; additive function; quasi-Banach space; p-Banach space;
D O I
10.1007/s00009-009-0007-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the general solution of the functional equation integral(x + 2y) + integral(x - 2y) + 4 integral(x) = 3[integral(x + y) + integral(x - y)] + integral(2y) - 2 integral(y) and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 22 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
Aczel J., 1987, A Short Course on Functional Equations
[3]  
[Anonymous], 1986, Operator Theory: Advances and Applications
[4]  
Benyamini Y., 2000, Geometric Nonlinear Functional Analysis I, V48, DOI [DOI 10.1090/COLL/048, 10.1090/coll/048]
[5]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[6]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[7]   On the Hyers-Ulam-Rassias stability of an additive functional equation in quasi-Banach spaces [J].
Eskandani, G. Zamani .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :405-409
[8]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[9]  
Grabiec A, 1996, PUBL MATH-DEBRECEN, V48, P217
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224