Finite element methods: Research in India over the last decade

被引:0
作者
Nataraj, Neela [1 ]
Murthy, A. S. Vasudeva [2 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
[2] TIFR Ctr Appl Math, Bangalore 560065, Karnataka, India
关键词
Finite element method; conforming; nonconforming; discontinuous Galerkin; a priori; a posteriori; error estimates; DISCONTINUOUS GALERKIN METHODS; INTERIOR PENALTY METHOD; ERROR ANALYSIS; NUMERICAL-ANALYSIS; ELLIPTIC-EQUATIONS; A-PRIORI; MOTION; CONVERGENCE; SCHEME; MODEL;
D O I
10.1007/s13226-019-0352-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a summary of major contributions of Indian mathematicians to the mathematical aspects of the finite element method in the last one decade: 2008-2017. We briefly trace out the historical origins of the topic in India and abroad. A section on the method itself is included so that this review is accessible to anybody with a background in partial differential equations and numerical techniques for solving it.
引用
收藏
页码:739 / 765
页数:27
相关论文
共 106 条
[1]  
[Anonymous], 2013, SERIES COMPUTATIONAL
[2]   Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity [J].
Badia, S. ;
Codina, R. ;
Gudi, T. ;
Guzman, J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :800-819
[3]   On a two-grid finite element scheme combined with Crank-Nicolson method for the equations of motion arising in the Kelvin-Voigt model [J].
Bajpai, S. ;
Nataraj, N. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) :2277-2291
[4]   On three steps two-grid finite element methods for the 2D-transient Navier Stokes equations [J].
Bajpai, Saumya ;
Pani, Amiya K. .
JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (04) :199-228
[5]   On a two-grid finite element scheme for the equations of motion arising in Kelvin-Voigt model [J].
Bajpai, Saumya ;
Nataraj, Neela ;
Pani, Amiya K. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (5-6) :1043-1071
[6]  
Bajpai S, 2013, INT J NUMER ANAL MOD, V10, P481
[7]   Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow [J].
Bajpai, Saumya ;
Nataraj, Neela ;
Pani, Amiya K. ;
Damazio, Pedro ;
Yuan, Jin Yun .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) :857-883
[8]   A MIXED FINITE-ELEMENT METHOD FOR 4TH-ORDER ELLIPTIC PROBLEMS WITH VARIABLE-COEFFICIENTS [J].
BALASUNDARAM, S ;
BHATTACHARYYA, PK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 22 (01) :1-24
[9]   A MIXED FINITE-ELEMENT METHOD FOR 4TH ORDER ELLIPTIC-EQUATIONS WITH VARIABLE-COEFFICIENTS [J].
BALASUNDARAM, S ;
BHATTACHARYYA, PK .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (03) :245-256
[10]   A MIXED FINITE-ELEMENT METHOD FOR 4TH ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
BALASUNDARAM, S ;
BHATTACHARYYA, PK .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (10) :489-499