Ordinary and generalized Green's functions for the second order discrete nonlocal problems

被引:4
作者
Paukstaite, Gaile [1 ,2 ]
Stikonas, Arturas [1 ,2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
discrete problem; nonlocal conditions; generalized Green's function; ordinary Green's function; least squares solution; Moore-Penrose inverse; STATIONARY PROBLEMS; BOUNDARY-CONDITIONS; OPERATOR;
D O I
10.1186/s13661-015-0474-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the properties of a generalized Green's function describing the minimum norm least squares solution for a second order discrete problem with two nonlocal conditions. The properties obtained of a generalized Green's function resemble analogous properties of an ordinary Green's function that describes the unique exact solution if it exists. Several features are illustrated by examples.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1828, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism
[2]  
Ben-Israel A., 2003, Generalized inverses: theory and applications
[3]  
Buda V, 1985, MATEM MSHINN METODY, P36
[4]  
Cabada A, 2014, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-9506-2
[5]   A PARABOLIC EQUATION WITH NONLOCAL BOUNDARY-CONDITIONS ARISING FROM ELECTROCHEMISTRY [J].
CHOI, YS ;
CHAN, KY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (04) :317-331
[6]   Generalized Green's functions and the effective domain of influence [J].
Estep, D ;
Holst, M ;
Larson, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1314-1339
[7]   Nonlocal boundary value problems [J].
Franco, Daniel ;
Infante, Gennaro ;
Minhos, Feliz Manuel .
BOUNDARY VALUE PROBLEMS, 2012, :1-1
[8]   A Green's function formulation of nonlocal finite-difference schemes for reaction-diffusion equations [J].
Hernandez-Martinez, Eliseo ;
Valdes-Parada, Francisco J. ;
Alvarez-Ramirez, Jose .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) :3096-3103
[9]  
ILIN VA, 1987, DIFF EQUAT+, V23, P803
[10]   The thermostat problem with a nonlocal nonlinear boundary condition [J].
Kalna, G ;
McKee, S .
IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (05) :437-462