From FE Combiners to Secure MPC and Back

被引:10
作者
Ananth, Prabhanjan [1 ]
Badrinarayanan, Saikrishna [2 ]
Jain, Aayush [2 ]
Manohar, Nathan [2 ]
Sahai, Amit [2 ]
机构
[1] UCSB, Santa Barbara, CA 93106 USA
[2] UCLA, Los Angeles, CA USA
来源
THEORY OF CRYPTOGRAPHY, TCC 2019, PT I | 2019年 / 11891卷
关键词
Functional encryption; Cryptographic combiners; Multi-party computation; IDENTITY;
D O I
10.1007/978-3-030-36030-6_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cryptographic combiners allow one to combine many candidates for a cryptographic primitive, possibly based on different computational assumptions, into another candidate with the guarantee that the resulting candidate is secure as long as at least one of the original candidates is secure. While the original motivation of cryptographic combiners was to reduce trust on existing candidates, in this work, we study a rather surprising implication of combiners to constructing secure multiparty computation protocols. Specifically, we initiate the study of functional encryption combiners and show its connection to secure multiparty computation. Functional encryption (FE) has incredible applications towards computing on encrypted data. However, constructing the most general form of this primitive has remained elusive. Although some candidate constructions exist, they rely on nonstandard assumptions, and thus, their security has been questioned. An FE combiner attempts to make use of these candidates while minimizing the trust placed on any individual FE candidate. Informally, an FE combiner takes in a set of FE candidates and outputs a secure FE scheme if at least one of the candidates is secure. Another fundamental area in cryptography is secure multi-party computation (MPC), which has been extensively studied for several decades. In this work, we initiate a formal study of the relationship between functional encryption (FE) combiners and secure multi-party computation (MPC). In particular, we show implications in both directions between these primitives. As a consequence of these implications, we obtain the following main results. - A two-round semi-honest MPC protocol in the plain model secure against up to n- 1 corruptions with communication complexity proportional only to the depth of the circuit being computed assuming learning with errors (LWE). Prior two round protocols based on standard assumptions that achieved this communication complexity required trust assumptions, namely, a common reference string. - A functional encryption combiner based on pseudorandom generators (PRGs) in NC1. This is a weak assumption as such PRGs are implied by many concrete intractability problems commonly used in cryptography, such as ones related to factoring, discrete logarithm, and lattice problems [11]. Previous constructions of FE combiners, implicit in [7], were known only from LWE. Using this result, we build a universal construction of functional encryption: an explicit construction of functional encryption based only on the assumptions that functional encryption exists and PRGs in NC1.
引用
收藏
页码:199 / 228
页数:30
相关论文
共 79 条
  • [1] Agrawal S, 2013, LECT NOTES COMPUT SC, V8043, P500, DOI 10.1007/978-3-642-40084-1_28
  • [2] Ananth P., 2015, Report 2015/730
  • [3] A New Approach to Round-Optimal Secure Multiparty Computation
    Ananth, Prabhanjan
    Choudhuri, Arka Rai
    Jain, Abhishek
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2017, PT I, 2017, 10401 : 468 - 499
  • [4] Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps
    Ananth, Prabhanjan
    Sahai, Amit
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT I, 2017, 10210 : 152 - 181
  • [5] Robust Transforming Combiners from Indistinguishability Obfuscation to Functional Encryption
    Ananth, Prabhanjan
    Jain, Aayush
    Sahai, Amit
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT I, 2017, 10210 : 91 - 121
  • [6] Universal Constructions and Robust Combiners for Indistinguishability Obfuscation and Witness Encryption
    Ananth, Prabhanjan
    Jain, Aayush
    Naor, Moni
    Sahai, Amit
    Yogev, Eylon
    [J]. ADVANCES IN CRYPTOLOGY (CRYPTO 2016), PT II, 2016, 9815 : 491 - 520
  • [7] From Selective to Adaptive Security in Functional Encryption
    Ananth, Prabhanjan
    Brakerski, Zvika
    Segev, Gil
    Vaikuntanathan, Vinod
    [J]. ADVANCES IN CRYPTOLOGY, PT II, 2015, 9216 : 657 - 677
  • [8] Indistinguishability Obfuscation from Compact Functional Encryption
    Ananth, Prabhanjan
    Jain, Abhishek
    [J]. ADVANCES IN CRYPTOLOGY, PT I, 2015, 9215 : 308 - 326
  • [9] Ananth Prabhanjan., 2018, IACR Cryptology ePrint Archive, V2018, P615
  • [10] [Anonymous], 2016, 2016139 CRYPT EPRINT