Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17

被引:125
作者
Barbier, EL
Marrett, S
Danek, A
Vortmeyer, A
van Gelderen, P
Duyn, J
Bandettini, P
Grafman, J
Koretskyk, AP
机构
[1] NINDS, LFMI, NIH, Bethesda, MD 20892 USA
[2] Univ Grenoble 1, Lab Mixte, INSERM, U438,RMN Bioclin,LRC,CEA,Hop Albert Michallon, Grenoble, France
[3] NIMH, NIH, Tesla Funct Neuroimaging Facil 3, Bethesda, MD 20892 USA
[4] NINDS, NIH, Cognit Neurosci Sect, Bethesda, MD 20892 USA
[5] Univ Munich, Neurol Klin, Munich, Germany
[6] NINDS, Mol Pathologenesis Unit, Surg Neurol Branch, NIH, Bethesda, MD 20892 USA
关键词
human; cortical architecture; brain maps; myelin; Area V1;
D O I
10.1002/mrm.10255
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The brain can be parcellated into numerous anatomical and functional subunits. The classic work by Brodmann (Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909) identified areas of the cerebral cortex based on histological differences. An alternative to his cytoarchitectonic approach is the myeloarchitectonic approach. MRI has excellent white/gray matter contrast in the brain due to the presence of myelin, and thus seems uniquely suited for in vivo studies of cortical myeloarchitecture. Here it is demonstrated that the stripe or stria of Gennari can be consistently detected in human occipital cortex. T-1-weighted images obtained at 3T from six of 10 normal volunteers, with resolutions of 350 x 350 x 600 mu, clearly demonstrate this myelin-rich intracortical layer. It is concluded that the striate cortex (area 17 of Brodmann) of the human brain can be delineated in vivo on T-1-weighted images, potentially enabling detection of specific cortical boundaries within individual brains. Published 2002 Wiley-Liss, Inc.
引用
收藏
页码:735 / 738
页数:4
相关论文
共 19 条
  • [1] Brodmann's areas 17 and 18 brought into stereotaxic space - Where and how variable?
    Amunts, K
    Malikovic, A
    Mohlberg, H
    Schormann, T
    Zilles, K
    [J]. NEUROIMAGE, 2000, 11 (01) : 66 - 84
  • [2] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [3] Brodmann K, 1909, VERGLEICHENDE LOKALI
  • [4] Callaghan P.T., 1991, Principles of nuclear magnetic resonance microscopy, V1st
  • [5] INVIVO MYELOARCHITECTONIC ANALYSIS OF HUMAN STRIATE AND EXTRASTRIATE CORTEX USING MAGNETIC-RESONANCE-IMAGING
    CLARK, VP
    COURCHESNE, E
    GRAFE, M
    [J]. CEREBRAL CORTEX, 1992, 2 (05) : 417 - 424
  • [7] AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE
    COLLINS, DL
    NEELIN, P
    PETERS, TM
    EVANS, AC
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) : 192 - 205
  • [8] Gadian D.G., 1995, NMR ITS APPL LIVING, V2nd
  • [9] THE DISCOVERY OF THE VISUAL-CORTEX
    GLICKSTEIN, M
    [J]. SCIENTIFIC AMERICAN, 1988, 259 (03) : 118 - &
  • [10] Ultra high-resolution fMRI in monkeys with implanted RF coils
    Logothetis, NK
    Merkle, H
    Augath, M
    Trinath, T
    Ugurbil, K
    [J]. NEURON, 2002, 35 (02) : 227 - 242