Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer

被引:106
作者
Crittenden, Scott R. [1 ]
Sund, Christian J. [1 ]
Sumner, James J. [1 ]
机构
[1] USA, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
关键词
D O I
10.1021/la061869j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Numerous bacterial genera are known to respire anaerobically using macroscopic electrodes as electron acceptors. Typically, inexpensive graphite electrodes, which are readily colonized, are used to monitor electrogenic bacterial metabolism for microbial fuel cell and bioelectronics studies. We compare current production by electrogenic bacteria on gold electrodes coated with various alkanethiol self-assembled monolayers to current production on glassy carbon electrodes. Current production is correlated to chain length and headgroup of the monolayer molecules as expected. Relative to graphite, the coated gold electrodes achieve more reproducible experimental conditions and certain headgroups enhance electronic coupling to the bacteria.
引用
收藏
页码:9473 / 9476
页数:4
相关论文
共 26 条
[1]   Charge transfer on the nanoscale: Current status [J].
Adams, DM ;
Brus, L ;
Chidsey, CED ;
Creager, S ;
Creutz, C ;
Kagan, CR ;
Kamat, PV ;
Lieberman, M ;
Lindsay, S ;
Marcus, RA ;
Metzger, RM ;
Michel-Beyerle, ME ;
Miller, JR ;
Newton, MD ;
Rolison, DR ;
Sankey, O ;
Schanze, KS ;
Yardley, J ;
Zhu, XY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6668-6697
[2]   Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (04) :2186-2189
[3]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[4]   Biofuel cells and their development [J].
Bullen, RA ;
Arnot, TC ;
Lakeman, JB ;
Walsh, FC .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (11) :2015-2045
[5]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[6]   Redox properties of cytochrome c adsorbed on self-assembled monolayers:: A probe for protein conformation and orientation [J].
Chen, XX ;
Ferrigno, R ;
Yang, J ;
Whitesides, GA .
LANGMUIR, 2002, 18 (18) :7009-7015
[7]   Increased performance of single-chamber microbial fuel cells using an improved cathode structure [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) :489-494
[8]   Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration [J].
Coates, JD ;
Cole, KA ;
Chakraborty, R ;
O'Connor, SM ;
Achenbach, LA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (05) :2445-2452
[9]   Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment [J].
Dobbin, PS ;
Carter, JP ;
San Juan, CGS ;
von Hobe, M ;
Powell, AK ;
Richardson, DJ .
FEMS MICROBIOLOGY LETTERS, 1999, 176 (01) :131-138
[10]   Desulfitobacterium metallireducens sp nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds [J].
Finneran, KT ;
Forbush, HM ;
VanPraagh, CVG ;
Lovley, DR .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2002, 52 :1929-1935