ON SOME NONUNIFORM CASES OF THE WEIGHTED SOBOLEV AND POINCARE INEQUALITIES

被引:10
作者
Mamedov, F. I. [1 ]
Amanov, R. A. [2 ]
机构
[1] Azerbaidzhan & Dichle Univ, Natl Acad Sci, Inst Math & Mech, Diyarbakir, Turkey
[2] Natl Acad Sci, Inst Math & Mech, Azerbaidzhan, Turkey
关键词
Sobolev and Poincare inequalities; Carnot-Caratheodory metric; Besicovitch property; NONLINEAR SUBELLIPTIC EQUATIONS; CARNOT-CARATHEODORY SPACES; VECTOR-FIELDS; REPRESENTATION FORMULAS; DIFFERENTIAL EQUATIONS; HARNACK INEQUALITY; OPERATORS; METRICS; THEOREM;
D O I
10.1090/S1061-0022-09-01055-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weighted inequalities parallel to f parallel to(q,nu,B0) <= C Sigma(n)(j=1) parallel to f(xj)parallel to(p,omega j,B0) of Sobolev type (supp f subset of B-0) and of Poincare type ((f) over bar (nu,B0) = 0) are studied, with different weight functions for each partial derivative f(xj), for parallelepipeds B-0 subset of E-n, n >= 1. Also, weighted inequalities parallel to f parallel to(q,nu) <= C parallel to X f parallel to(p,omega) of the same type are considered for vector fields X = {X-j}, j = 1,..., m, with infinitely differentiable coefficients satisfying the Hormander condition.
引用
收藏
页码:447 / 463
页数:17
相关论文
共 29 条
[1]  
[Anonymous], 1992, RES NOTICES, DOI DOI 10.1155/S1073792892000047
[2]  
[Anonymous], 1985, Sobolev Spaces
[3]  
[Anonymous], ARCH MATH
[4]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794
[5]  
Capogna L., 1994, COMMUN ANAL GEOM, V2, P203
[6]   A HARNACK INEQUALITY FOR DEGENERATE PARABOLIC EQUATIONS [J].
CHIARENZA, FM ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (08) :719-749
[7]  
DANIELLI D, 1995, INDIANA U MATH J, V44, P269
[8]  
DANIELLI D, 1992, CR ACAD SCI I-MATH, V314, P987
[9]  
de Guzman, 1975, LECT NOTES MATH, V481
[10]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH