Morphometric, geographic, and territorial characterization of brain arterial trees

被引:37
作者
Mut, Fernando [1 ]
Wright, Susan [2 ]
Ascoli, Giorgio A. [2 ]
Cebral, Juan R. [1 ]
机构
[1] George Mason Univ, Ctr Computat Fluid Dynam, Coll Sci, Fairfax, VA 22030 USA
[2] George Mason Univ, Krasnow Inst Adv Studies, Fairfax, VA 22030 USA
关键词
brain vasculature; circle of Willis; morphometry; atlasing; vascular territories; BLOOD-FLOW; QUANTITATIVE ASSESSMENT; DIGITAL RECONSTRUCTION; SYSTEM; MODEL; SIMULATION; CIRCLE; WILLIS;
D O I
10.1002/cnm.2627
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Morphometric information of the brain vascularization is valuable for a variety of clinical and scientific applications. In particular, this information is important when creating arterial tree models for imposing boundary conditions in numerical simulations of the brain hemodynamics. The purpose of this work is to provide quantitative descriptions of arterial branches, bifurcation patterns, shape, and geographical distribution of the arborization of the main cerebral arteries as well as estimations of the corresponding vascular territories. For this purpose, subject-specific digital reconstructions of the brain vascular network created from 3T magnetic resonance angiography images of healthy volunteers are used to derive population-averaged morphometric characteristics of the cerebral arterial trees. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 25 条
[11]   Quantitative Assessment of Mixed Cerebral Vascular Territory Supply With Vessel Encoded Arterial Spin Labeling MRI [J].
Kansagra, Akash P. ;
Wong, Eric C. .
STROKE, 2008, 39 (11) :2980-2985
[12]   A three-dimensional model for arterial tree representation, generated by constrained constructive optimization [J].
Karch, R ;
Neumann, F ;
Neumann, M ;
Schreiner, W .
COMPUTERS IN BIOLOGY AND MEDICINE, 1999, 29 (01) :19-38
[13]   Scaling laws of vascular trees: of form and function [J].
Kassab, GS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 290 (02) :H894-H903
[14]   A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) [J].
Mazziotta, J ;
Toga, A ;
Evans, A ;
Fox, P ;
Lancaster, J ;
Zilles, K ;
Woods, R ;
Paus, T ;
Simpson, G ;
Pike, B ;
Holmes, C ;
Collins, L ;
Thompson, P ;
MacDonald, D ;
Iacoboni, M ;
Schormann, T ;
Amunts, K ;
Palomero-Gallagher, N ;
Geyer, S ;
Parsons, L ;
Narr, K ;
Kabani, N ;
Le Goualher, G ;
Boomsma, D ;
Cannon, T ;
Kawashima, R ;
Mazoyer, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1412) :1293-1322
[16]   Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions [J].
Olufsen, MS ;
Peskin, CS ;
Kim, WY ;
Pedersen, EM ;
Nadim, A ;
Larsen, J .
ANNALS OF BIOMEDICAL ENGINEERING, 2000, 28 (11) :1281-1299
[17]   Structured tree outflow condition for blood flow in larger systemic arteries [J].
Olufsen, MS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 276 (01) :H257-H268
[18]   Finite element simulation of blood flow in the cerebral artery [J].
Oshima, M ;
Torii, R ;
Kobayashi, T ;
Taniguchi, N ;
Takagi, K .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :661-671
[19]   Pulsatile blood flow, shear force, energy dissipation and Murray's Law [J].
Painter, Page R. ;
Eden, Patrik ;
Bengtsson, Hans-Uno .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2006, 3
[20]   Extension of Murray's law using a non-Newtonian model of blood flow [J].
Revellin, Remi ;
Rousset, Francois ;
Baud, David ;
Bonjour, Jocelyn .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2009, 6