Morphometric, geographic, and territorial characterization of brain arterial trees

被引:37
作者
Mut, Fernando [1 ]
Wright, Susan [2 ]
Ascoli, Giorgio A. [2 ]
Cebral, Juan R. [1 ]
机构
[1] George Mason Univ, Ctr Computat Fluid Dynam, Coll Sci, Fairfax, VA 22030 USA
[2] George Mason Univ, Krasnow Inst Adv Studies, Fairfax, VA 22030 USA
关键词
brain vasculature; circle of Willis; morphometry; atlasing; vascular territories; BLOOD-FLOW; QUANTITATIVE ASSESSMENT; DIGITAL RECONSTRUCTION; SYSTEM; MODEL; SIMULATION; CIRCLE; WILLIS;
D O I
10.1002/cnm.2627
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Morphometric information of the brain vascularization is valuable for a variety of clinical and scientific applications. In particular, this information is important when creating arterial tree models for imposing boundary conditions in numerical simulations of the brain hemodynamics. The purpose of this work is to provide quantitative descriptions of arterial branches, bifurcation patterns, shape, and geographical distribution of the arborization of the main cerebral arteries as well as estimations of the corresponding vascular territories. For this purpose, subject-specific digital reconstructions of the brain vascular network created from 3T magnetic resonance angiography images of healthy volunteers are used to derive population-averaged morphometric characteristics of the cerebral arterial trees. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 25 条
[1]   A computational approach to generate concurrent arterial networks in vascular territories [J].
Blanco, P. J. ;
de Queiroz, R. A. B. ;
Feijoo, R. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (05) :601-614
[2]   A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks [J].
Brown, KM ;
Donohue, DE ;
D'Alessandro, G ;
Ascoli, GA .
NEUROINFORMATICS, 2005, 3 (04) :343-359
[3]   Development of optimized vascular fractal tree models using level set distance function [J].
Bui, Anh V. ;
Manasseh, Richard ;
Liffman, Kurt ;
Sutalo, Ilija D. .
MEDICAL ENGINEERING & PHYSICS, 2010, 32 (07) :790-794
[4]   Blood-flow models of the circle of Willis from magnetic resonance data [J].
Cebral, JR ;
Castro, MA ;
Soto, O ;
Löhner, R ;
Alperin, N .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) :369-386
[5]  
Cebral JR, 2000, ECCOMAS BARC SPAIN, P1
[6]   Quantitative Assessment of External Carotid Artery Territory Supply with Modified Vessel-Encoded Arterial Spin-Labeling [J].
Dang, Y. ;
Wu, B. ;
Sun, Y. ;
Mo, D. ;
Wang, X. ;
Zhang, J. ;
Fang, J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (07) :1380-1386
[7]   BLOOD FLOW IN THE CIRCLE OF WILLIS: MODELING AND CALIBRATION [J].
Devault, Kristen ;
Gremaud, Pierre A. ;
Novak, Vera ;
Olufsen, Mette S. ;
Vernieres, Guillaume ;
Zhao, Peng .
MULTISCALE MODELING & SIMULATION, 2008, 7 (02) :888-909
[8]   A model for transport and dispersion in the circulatory system based on the vascular fractal tree [J].
Dokoumetzidis, A ;
Macheras, P .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (03) :284-293
[9]   Digital reconstructions of neuronal morphology: three decades of research trends [J].
Halavi, Maryam ;
Hamilton, Kelly A. ;
Parekh, Ruchi ;
Ascoli, Giorgio A. .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[10]   Which diameter and angle rule provides optimal flow patterns in a coronary bifurcation? [J].
Huo, Yunlong ;
Finet, Gerard ;
Lefevre, Thierry ;
Louvard, Yves ;
Moussa, Issam ;
Kassab, Ghassan S. .
JOURNAL OF BIOMECHANICS, 2012, 45 (07) :1273-1279