Convolution and analytic Fourier-Feynman transforms over paths in abstract Wiener space

被引:10
作者
Chang, KS [1 ]
Kim, BS
Song, TS
Yoo, I
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Yonsei Univ, Dept Math, Kangwon Do 220710, South Korea
关键词
abstract Wiener space; analytic Feynman integral; Fourier-Feynman transform; convolution;
D O I
10.1080/10652460213523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define an L-p analytic Fourier-Feynman transform on C-0(B) , the space of abstract Wiener space valued continuous functions on [0, T] . We establish existence theorems and inverse transform theorems of this transform for some classes of cylinder type functions on C-0(B) having the form F(x) = f((h(1), x(s(1)))(similar to) ,hm, x(sn))similar to{s/n)(similar to) . Moreover we present various relationships involving convolution and the transforms.
引用
收藏
页码:345 / 362
页数:18
相关论文
共 16 条
[1]  
Brue M.D., 1972, THESIS U MINNESOTA M
[2]  
CAMERON RH, 1976, MICH MATH J, V23, P1
[3]  
CAMERON RH, 1968, J MATH MECH, V18, P517
[4]  
CHANG KS, 1997, COMM KOREAN MATH SOC, V12, P579
[5]  
GROSS L, 1965, 5TH P BERK S MATH ST, V2, P31
[6]   ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION [J].
HUFFMAN, T ;
PARK, C ;
SKOUG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :661-673
[7]   CAMERON-STORVICK FUNCTION SPACE INTEGRAL - AN L(LP,LP') THEORY [J].
JOHNSON, GW ;
SKOUG, DL .
NAGOYA MATHEMATICAL JOURNAL, 1976, 60 (FEB) :93-137
[8]  
JOHNSON GW, 1979, MICH MATH J, V26, P103
[9]   LAW OF ITERATED LOGARITHM FOR BROWNIAN-MOTION IN A BANACH-SPACE [J].
KUELBS, J ;
LEPAGE, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 185 (458) :253-264
[10]  
Kuo Hui- Hsiung, 1975, GAUSSIAN MEASURE BAN