Sensitivity and Directivity Analysis of Piezoelectric Ultrasonic Cantilever-Based MEMS Hydrophone for Underwater Applications

被引:15
作者
Abdul, Basit [1 ,2 ]
Mastronardi, Vincenzo Mariano [1 ]
Qualtieri, Antonio [1 ]
Algieri, Luciana [1 ]
Guido, Francesco [1 ]
Rizzi, Francesco [1 ]
De Vittorio, Massimo [1 ,2 ]
机构
[1] Ist Italiano Tecnol, Ctr Biomol Nanotechnol, Via Barsanti 14, I-73010 Lecce, Italy
[2] Univ Salento, Dept Innovat Engn, Via Monteroni, I-73100 Lecce, Italy
关键词
MEMS; AlN; stress; piezoelectricity; hydrophone; sensitivity; underwater acoustic; stress-driven; VECTOR HYDROPHONE; HAIR CELL; OPTIMIZATION; DESIGN; POWER;
D O I
10.3390/jmse8100784
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, we report on the characterization of the sensitivity and the directionality of a novel ultrasonic hydrophone fabricated by micro-electro-mechanical systems (MEMS) process, using aluminum nitride (AlN) thin film as piezoelectric functional layer and exploiting a stress-driven design. Hydrophone structure and fabrication consist of four piezoelectric cantilevers in cross configuration, whose first resonant frequency mode in water is designed between 20 kHz and 200 kHz. The MEMS fabricated structures exploit 1 mu m and 2 mu m thick piezoelectric AlN thin film embedded between two molybdenum electrodes grown by DC magnetron sputtering on silicon (Si) wafer. The 200 nm thick molybdenum electrodes thin layers add a stress-gradient through cantilever thickness, leading to an out-of-plane cantilever bending. A water resistant parylene conformal coating of 1 mu m was deposited on each cantilever for waterproof operation. AlN upward bent cantilevers show maximum sensitivity up to -163 dB. The cross configuration of four stress-driven piezoelectric cantilevers, combined with an opportune algorithm for processing all data sensors, permits a finer directionality response of this hydrophone.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 59 条
[1]   Design and simulation of pulsatile blood flow energy harvester for powering medical devices [J].
Abdelmageed, Mostafa G. ;
El-Bab, Ahmed M. R. Fath ;
Abouelsoud, A. A. .
MICROELECTRONICS JOURNAL, 2019, 86 :105-113
[2]   Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application [J].
Abdul, B. ;
Mastronardi, V. M. ;
Qualtieri, A. ;
Guido, F. ;
Algieri, L. ;
Rizzi, F. ;
De Vittorio, M. .
MICRO AND NANO ENGINEERING, 2020, 7
[3]   Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics [J].
Abels, Claudio ;
Mastronardi, Vincenzo Mariano ;
Guido, Francesco ;
Dattoma, Tommaso ;
Qualtieri, Antonio ;
Megill, William M. ;
De Vittorio, Massimo ;
Rizzi, Francesco .
SENSORS, 2017, 17 (05)
[4]   Development of piezoelectric micromachined ultrasonic transducers [J].
Akasheh, F ;
Myers, T ;
Fraser, JD ;
Bose, S ;
Bandyopadhyay, A .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 111 (2-3) :275-287
[5]   Sensitivity Enhancement of MEMS Diaphragm Hydrophones Using an Integrated Ring MOSFET Transducer [J].
Amiri, Peyman ;
Kordrostami, Zoheir .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (11) :2121-2130
[6]  
[Anonymous], **NON-TRADITIONAL**
[7]   Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles [J].
Asadnia, Mohsen ;
Kottapalli, Ajay Giri Prakash ;
Shen, Zhiyuan ;
Miao, Jianmin ;
Triantafyllou, Michael .
IEEE SENSORS JOURNAL, 2013, 13 (10) :3918-3925
[8]  
Asanuma H, 2003, 3RD INTERNATIONAL WORKSHOP ON SCIENTIFIC USE OF SUBMARINE CABLES AND RELATED TECHNOLOGY, PROCEEDINGS, P315
[9]  
Asthana P, 2019, MICROELECTRON J, V93, DOI [10.1016/j.mejo.2010.104635, 10.1016/j.mejo.2019.104635]
[10]  
Bao M.H, 2005, ANAL DESIGN PRINCIPL, V1st, P71, DOI [10.16309/j.cnki.issn.1007-1776.2003.03.004, DOI 10.16309/J.CNKI.ISSN.1007-1776.2003.03.004]