Understanding the ring-opening polymerisation of dioxolanones

被引:32
作者
Xu, Yuechao [1 ]
Perry, Mitchell R. [1 ]
Cairns, Stefan A. [2 ]
Shaver, Michael P. [1 ]
机构
[1] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[2] Univ Edinburgh, Sch Chem, Joseph Black Bldg,David Brewster Rd, Edinburgh EH9 3FJ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
ALPHA-HYDROXY ACIDS; O-CARBOXYANHYDRIDES; POLY(ALPHA-HYDROXY ACID)S; ALIPHATIC POLYESTERS; ALUMINUM SALEN; LACTIC-ACID; INITIATORS; CATALYSTS; POLYMERS; MONOMERS;
D O I
10.1039/c8py01695j
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Sustainable monomers built from ring-closed alpha-hydroxyacids to form 1,3-dioxolane-4-ones (DOX) are both easily prepared and functional group tolerant. Subsequent ring-opening polymerisation (ROP) of DOX furnishes a broad scope of functional poly(alpha-hydroxy acid)s (PAHAs). Elusive polymers like isotactic poly(mandelic acid) are accessible and we now report that the formaldehyde eliminated during the polymerisation can induce a competing side reaction. In this contribution, we propose a new mechanism of ring-opening for these monomers, involving competitive elimination and a subsequent Tishchenko reaction facilitated by formaldehyde. Both catalyst design and polymerisation methodology can be modified to reduce the impact of the Tishchenko reaction, with sterically-unencumbered and electronically-neutral salen aluminium catalysts exhibiting the best performance in the ROP of 5-phenyl-1,3-dioxolane-4-one (PhDOX), providing the best balance of reactivity and selectivity. Importantly, crystalline poly(mandelic acid) was obtained using a dynamic vacuum ROP either neat or in diphenyl ether, where volatilisation of the formaldehyde allows for production of polymers with thermal properties competitive with commercial polystyrene.
引用
收藏
页码:3048 / 3054
页数:7
相关论文
共 50 条
[31]   Controlled Ring-Opening Polymerization of Macrocyclic Monomers Based on Ring-Opening/Ring-Closing Cascade Reaction [J].
Chen, Wensen ;
Guo, Changjuan ;
Ding, Hao ;
Yang, Xingyu ;
Zhang, Ke .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (45) :25022-25030
[32]   Recent advances in ring-opening (co)Polymerization of O-carboxyanhydrides [J].
Lu, Li ;
Lin, Jie ;
Peng, Tingting ;
Jia, Zhaowei ;
Wu, Jincai .
POLYMER, 2024, 314
[33]   A perspective on redox-switchable ring-opening polymerization [J].
Shawver, Nicholas M. M. ;
Doerr, Alicia M. M. ;
Long, Brian K. K. .
JOURNAL OF POLYMER SCIENCE, 2023, 61 (05) :361-371
[34]   Developments in Externally Regulated Ring-Opening Metathesis Polymerization [J].
Ogawa, Kelli A. ;
Goetz, Adam E. ;
Boydston, Andrew J. .
SYNLETT, 2016, 27 (02) :203-214
[35]   Degradable Polyphosphoramidate via Ring-Opening Metathesis Polymerization [J].
Liang, Yifei ;
Sun, Hao ;
Cao, Wei ;
Thompson, Matthew P. ;
Gianneschi, Nathan C. .
ACS MACRO LETTERS, 2020, 9 (10) :1417-1422
[36]   Titanium complexes with octahedral geometry chelated by salen ligands adopting β-cis configuration for the ring-opening polymerisation of lactide [J].
Gao, Bo ;
Li, Xiang ;
Duan, Ranlong ;
Pang, Xuan .
NEW JOURNAL OF CHEMISTRY, 2015, 39 (04) :2404-2408
[37]   Cation-π interactions enabling hard/soft Ti/Ag heterobimetallic cooperativity in lactide ring-opening polymerisation [J].
Baker, Chloe A. ;
Romain, Charles ;
Long, Nicholas J. .
CHEMICAL COMMUNICATIONS, 2021, 57 (93) :12524-12527
[38]   Geometry Change in a Series of Zirconium Compounds during Lactide Ring-Opening Polymerization [J].
Dai, Ruxi ;
Lai, Amy ;
Alexandrova, Anastassia N. ;
Diaconescu, Paula L. .
ORGANOMETALLICS, 2018, 37 (21) :4040-4047
[39]   Fast and selective ring-opening polymerizations by alkoxides and thioureas [J].
Zhang, Xiangyi ;
Jones, Gavin O. ;
Hedrick, James L. ;
Waymouth, Robert M. .
NATURE CHEMISTRY, 2016, 8 (11) :1047-1053
[40]   Amine-Containing Monomers for Ring-Opening Metathesis Polymerization: Understanding Chelate Effects in Aryl- and Alkylamine-Functionalized Polyolefins [J].
Kuanr, Nirmalendu ;
Gilmour, Damon J. ;
Gildenast, Hans ;
Perry, Mitchell R. ;
Schafer, Laurel L. .
MACROMOLECULES, 2022, 55 (10) :3840-3849