Maximum power point analysis for partial shading detection and identification in photovoltaic systems

被引:23
作者
Fadhel, S. [1 ,2 ,4 ]
Diallo, D. [2 ]
Delpha, C. [3 ]
Migan, A. [2 ]
Bahri, I [2 ]
Trabelsi, M. [4 ]
Mimouni, M. F. [4 ]
机构
[1] Univ Sousse, Ecole Natl Ingn Sousse, Sousse 4023, Tunisia
[2] Univ Paris Saclay, Lab Genie Elect & Elect Paris, CNRS, Cent Supelec, F-91192 Gif Sur Yvette, France
[3] Univ Paris Saclay, Lab Signaux & Syst, Cent Supelec, CNRS, F-91192 Gif Sur Yvette, France
[4] Ecole Natl Ingn Monastir, Lab Automat Syst Elect & Environm, Monastir 5035, Tunisia
关键词
Photovoltaic system; Fault diagnosis; Partial shading; Maximum Power Point (MPP); Principal component analysis; Linear discriminant analysis; FAULT-DETECTION METHOD; CLASSIFICATION; INSTALLATIONS; PERFORMANCE; ALGORITHMS; DIAGNOSIS; PCA; LDA;
D O I
10.1016/j.enconman.2020.113374
中图分类号
O414.1 [热力学];
学科分类号
摘要
Fault diagnosis of photovoltaic (PV) systems is a crucial task to guarantee security, increase productivity, efficiency, and availability. In this regard, numerous diagnosis methods have been developed. Methods requiring the interruption of power production are not adequate for economic reasons. The development of large-scale PV plants and the objective of maintenance cost reduction push toward the emergence of automatic on-line diagnosis methods that use available information. In this study, we propose two data-driven methods for partial shading diagnosis using only the maximum power point's information. It does not require the interruption of production, nor does it require any additional equipment to obtain the I(V) curve. The analyses are conducted with principal component analysis (PCA) and linear discriminant analysis (LDA) to detect and classify the faults. The experimental dataset is collected from a 250 Wp PV module under four states of health (healthy, and three severities of partial shading) for several meteorological conditions. The classification results have a 100% success rate, and are robust to the variations of temperature and irradiance.
引用
收藏
页数:17
相关论文
共 44 条
[1]   An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time [J].
Alahmad, Mahmoud ;
Chaaban, Mohamed Amer ;
Lau, Su Kit ;
Shi, Jonathan ;
Neal, Jill .
SOLAR ENERGY, 2012, 86 (03) :951-963
[2]  
Alam MK, 2014, IEEE ENER CONV, P3294, DOI 10.1109/ECCE.2014.6953848
[3]   Review and Performance Evaluation of Photovoltaic Array Fault Detection and Diagnosis Techniques [J].
Appiah, Albert Yaw ;
Zhang, Xinghua ;
Ayawli, Ben Beklisi Kwame ;
Kyeremeh, Frimpong .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2019, 2019
[4]   A Time-Based Global Maximum Power Point Tracking Technique for PV System [J].
Aquib, Mohd ;
Jain, Sachin ;
Agarwal, Vivek .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (01) :393-402
[5]   A shadow fault detection method based on the standard error analysis of I-V curves [J].
Bressan, M. ;
El Basri, Y. ;
Galeano, A. G. ;
Alonso, C. .
RENEWABLE ENERGY, 2016, 99 :1181-1190
[6]  
Chaaban M. A., 2010, IECON 2010 - 36th Annual Conference of IEEE Industrial Electronics, P3192, DOI 10.1109/IECON.2010.5675047
[7]   Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems [J].
Chaibi, Y. ;
Malvoni, M. ;
Chouder, A. ;
Boussetta, M. ;
Salhi, M. .
ENERGY CONVERSION AND MANAGEMENT, 2019, 196 :330-343
[8]   Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics [J].
Chen, Zhicong ;
Wu, Lijun ;
Cheng, Shuying ;
Lin, Peijie ;
Wu, Yue ;
Lin, Wencheng .
APPLIED ENERGY, 2017, 204 :912-931
[9]   Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review [J].
Daliento, S. ;
Chouder, A. ;
Guerriero, P. ;
Pavan, A. Massi ;
Mellit, A. ;
Moeini, R. ;
Tricoli, P. .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2017, 2017
[10]   Model-Based Degradation Analysis of Photovoltaic Modules Through Series Resistance Estimation [J].
David Bastidas-Rodriguez, Juan ;
Franco, Edinson ;
Petrone, Giovanni ;
Andres Ramos-Paja, Carlos ;
Spagnuolo, Giovanni .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) :7256-7265