Novel 1-3 (K, Na)NbO3-based ceramic/epoxy composites with large thickness-mode electromechanical coupling coefficient and good temperature stability

被引:17
作者
Zhou, Chunming [1 ]
Zhang, Jialiang [1 ]
Liu, Dakang [1 ]
Zhang, Zhen [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
1-3 piezoelectric composites; KNN-based ceramics; Modified dice-and-fill technique; Electromechanical coupling coefficient; Temperature stability; PIEZOELECTRIC PROPERTIES; PIEZOCOMPOSITES; TRANSDUCERS; MICROSCALE; BEHAVIOR; STRAIN;
D O I
10.1016/j.ceramint.2020.10.031
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The 1-3 piezoelectric composites are an important type of artificial functional materials for ultrasonic transducers. Currently, there are increasingly strong demands to replace the lead-containing materials. Excellent 1-3 0.96(K0.48Na0.52) (Nb0.96Sb0.04)O-3-0.03BaZrO(3)-0.01(Bi0.50Na0.50)ZrO3 ceramic/epoxy (abbreviated hereafter as KNNS-0.03BZ-0.01BNZ/epoxy) piezoelectric composites were prepared by a modified dice-and-fill technique. Compared to the monolithic KNNS-0.03BZ-0.01BNZ ceramic, the developed composites possess much larger electromechanical coupling coefficient k(t) of 0.54-0.67 and piezoelectric voltage coefficient g(33) of 64-91 x 10(-3) Vm/N. In addition, these composites also possess other favorable properties such as low values of acoustic impedance Z of 6.9-13.4 Mrayl, dielectric coefficient epsilon(33) of 130-400 and mechanical quality factor Q(m )of 1.3-4. More importantly, k(t) is weakly temperature-dependence in the common usage temperature range between -30 degrees C and 100 degrees C. The result indicates that the 1-3 KNNS-0.03BZ-0.01BNZ/epoxy piezoelectric composites have a great potential for high-frequency ultrasonic transducers.
引用
收藏
页码:4643 / 4647
页数:5
相关论文
共 42 条
[1]   1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound [J].
Abrar, A ;
Zhang, D ;
Su, B ;
Button, TW ;
Kirk, KJ ;
Cochran, S .
ULTRASONICS, 2004, 42 (1-9) :479-484
[2]  
[Anonymous], 1987, 176 ANSIIEEE
[3]   Advances in ultrasound biomicroscopy [J].
Foster, FS ;
Pavlin, CJ ;
Harasiewicz, KA ;
Christopher, DA ;
Turnbull, DH .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2000, 26 (01) :1-27
[4]   Resonance modes and losses in 1-3 piezocomposites for ultrasonic transducer applications [J].
Geng, XC ;
Zhang, QM .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) :1342-1350
[5]   Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics [J].
Guo, YP ;
Kakimoto, K ;
Ohsato, H .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :4121-4123
[6]   PIEZOELECTRIC COMPOSITE-MATERIALS FOR ULTRASONIC TRANSDUCER APPLICATIONS .1. RESONANT MODES OF VIBRATION OF PZT ROD POLYMER COMPOSITES [J].
GURURAJA, TR ;
SCHULZE, WA ;
CROSS, LE ;
NEWNHAM, RE ;
AULD, BA ;
WANG, YJ .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (04) :481-498
[7]   OVERVIEW OF FINE-SCALE PIEZOELECTRIC CERAMIC/POLYMER COMPOSITE PROCESSING [J].
JANAS, VF ;
SAFARI, A .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (11) :2945-2955
[8]   Finite element modelling on time dependent ferro electric behaviour of 1-3 piezocomposites [J].
Jayendiran, R. ;
Arockiarajan, A. .
CERAMICS INTERNATIONAL, 2015, 41 (03) :4621-4636
[9]   Fabrication of a (K,Na)NbO3-based lead-free 1-3 piezocomposite for high-sensitivity ultrasonic transducers application [J].
Jiang, Laiming ;
Chen, Ruimin ;
Xing, Jie ;
Lu, Gengxi ;
Li, Runze ;
Jiang, Yue ;
Shung, K. Kirk ;
Zhu, Jianguo ;
Zhou, Qifa .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (21)
[10]   Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator [J].
Jiang, Laiming ;
Yang, Yang ;
Chen, Ruimin ;
Lu, Gengxi ;
Li, Runze ;
Li, Di ;
Humayun, Mark S. ;
Shung, K. Kirk ;
Zhu, Jianguo ;
Chen, Yong ;
Zhou, Qifa .
NANO ENERGY, 2019, 56 :216-224