Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin

被引:123
作者
Chan, Pan F. [1 ]
Srikannathasan, Velupillai [2 ]
Huang, Jianzhong [1 ]
Cui, Haifeng [1 ]
Fosberry, Andrew P. [2 ]
Gu, Minghua [1 ]
Hann, Michael M. [2 ]
Hibbs, Martin [2 ]
Homes, Paul [2 ]
Ingraham, Karen [1 ]
Pizzollo, Jason [1 ]
Shen, Carol [1 ]
Shillings, Anthony J. [2 ]
Spitzfaden, Claus E. [2 ]
Tanner, Robert [2 ]
Theobald, Andrew J. [2 ]
Stavenger, Robert A. [1 ]
Bax, Benjamin D. [2 ]
Gwynn, Michael N. [1 ]
机构
[1] GlaxoSmithKline, Antibacterial Discovery Performance Unit, Infect Dis, Therapy Area Unit, Collegeville, PA 19426 USA
[2] GlaxoSmithKline, Platform Technol & Sci, Med Res Ctr, Stevenage SG1 2NY, Herts, England
基金
英国惠康基金;
关键词
IN-VITRO ACTIVITY; TOPOISOMERASE-IV; QUINOLONE RESISTANCE; II TOPOISOMERASES; MECHANISM; AZD0914; REFINEMENT; COMPLEXES; MUTATION; SENSITIVITY;
D O I
10.1038/ncomms10048
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.
引用
收藏
页数:13
相关论文
共 61 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion [J].
Agrawal, Alka ;
Roue, Melanie ;
Spitzfaden, Claus ;
Petrella, Stephanie ;
Aubry, Alexandra ;
Hann, Michael ;
Bax, Benjamin ;
Mayer, Claudine .
BIOCHEMICAL JOURNAL, 2013, 456 :263-273
[3]   Mechanism of Quinolone Action and Resistance [J].
Aldred, Katie J. ;
Kerns, Robert J. ;
Osheroff, Neil .
BIOCHEMISTRY, 2014, 53 (10) :1565-1574
[4]   Overcoming Target-Mediated Quinolone Resistance in Topoisomerase IV by Introducing Metal-Ion-Independent Drug-Enzyme Interactions [J].
Aldred, Katie J. ;
Schwanz, Heidi A. ;
Li, Gangqin ;
McPherson, Sylvia A. ;
Turnbough, Charles L., Jr. ;
Kerns, Robert J. ;
Osheroff, Neil .
ACS CHEMICAL BIOLOGY, 2013, 8 (12) :2660-2668
[5]   Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance [J].
Aldred, Katie J. ;
McPherson, Sylvia A. ;
Turnbough, Charles L., Jr. ;
Kerns, Robert J. ;
Osheroff, Neil .
NUCLEIC ACIDS RESEARCH, 2013, 41 (08) :4628-4639
[6]   Drug Interactions with Bacillus anthracis Topoisomerase IV: Biochemical Basis for Quinolone Action and Resistance [J].
Aldred, Katie J. ;
McPherson, Sylvia A. ;
Wang, Pengfei ;
Kerns, Robert J. ;
Graves, David E. ;
Turnbough, Charles L., Jr. ;
Osheroff, Neil .
BIOCHEMISTRY, 2012, 51 (01) :370-381
[7]   Characterization of the Novel DNA Gyrase Inhibitor AZD0914: Low Resistance Potential and Lack of Cross-Resistance in Neisseria gonorrhoeae [J].
Alm, Richard A. ;
Lahiri, Sushmita D. ;
Kutschke, Amy ;
Otterson, Linda G. ;
McLaughlin, Robert E. ;
Whiteaker, James D. ;
Lewis, Lisa A. ;
Su, Xiaohong ;
Huband, Michael D. ;
Gardner, Humphrey ;
Mueller, John P. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2015, 59 (03) :1478-1486
[8]   Solution structures of DNA-bound gyrase [J].
Baker, Nicole M. ;
Weigand, Steven ;
Maar-Mathias, Sarah ;
Mondragon, Alfonso .
NUCLEIC ACIDS RESEARCH, 2011, 39 (02) :755-766
[9]  
Baldwin E. L., 2005, Current Medicinal Chemistry - Anti-Cancer Agents, V5, P363, DOI 10.2174/1568011054222364
[10]   Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones: Benzisoxazole Fusion with N-Linked Oxazolidinone Substituents Leading to a Clinical Candidate (ETX0914) [J].
Basarab, Gregory S. ;
Doig, Peter ;
Galullo, Vincent ;
Kern, Gunther ;
Kimzey, Amy ;
Kutschke, Amy ;
Newman, Joseph P. ;
Morningstar, Marshall ;
Mueller, John ;
Otterson, Linda ;
Vishwanathan, Karthick ;
Zhou, Fei ;
Gowravaram, Madhusudhan .
JOURNAL OF MEDICINAL CHEMISTRY, 2015, 58 (15) :6264-6282