On the hyperbolicity constant of circular-arc graphs

被引:3
作者
Reyes, Rosalio [1 ,2 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
Villeta, Maria [3 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54 Col Garita, Acalpulco Gro 39650, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[3] Univ Complutense Madrid, Dept Estadist & Invest Operat 3, Fac Estudios Estadist, Av Puerta de Hierro S-N, E-28040 Madrid, Spain
关键词
Circular graphs; Circular-arc graphs; Geometric graphs; Gromov hyperbolicity; Geodesics; RECOGNITION;
D O I
10.1016/j.dam.2018.01.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the context of geometric graphs. It measures the tree-likeness of a graph from a metric viewpoint. In particular, we are interested in circular-arc graphs, which is an important class of geometric intersection graphs. In this paper we give sharp bounds for the hyperbolicity constant of (finite and infinite) circular-arc graphs. Moreover, we obtain bounds for the hyperbolicity constant of the complement and line of any circular-arc graph. In order to do that, we obtain new results about regular, chordal and line graphs which are interesting by themselves. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 1956, Amer. Math. Monthly, DOI DOI 10.2307/2306658
[2]   A survey of Nordhaus-Gaddum type relations [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) :466-546
[3]   On the Hyperbolicity of Edge-Chordal and Path-Chordal Graphs [J].
Bermudo, Sergio ;
Carballosa, Walter ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. .
FILOMAT, 2016, 30 (09) :2599-2607
[4]   Small values of the hyperbolicity constant in graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Rosario, Omar ;
Sigarreta, Jose M. .
DISCRETE MATHEMATICS, 2016, 339 (12) :3073-3084
[5]   Gromov hyperbolic graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Vilaire, Jean-Marie .
DISCRETE MATHEMATICS, 2013, 313 (15) :1575-1585
[6]   Computing the hyperbolicity constant [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) :4592-4595
[7]   Hyperbolicity and complement of graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Touris, Eva .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1882-1887
[8]   Sustaining the Internet with hyperbolic mapping [J].
Boguna, Marian ;
Papadopoulos, Fragkiskos ;
Krioukov, Dmitri .
NATURE COMMUNICATIONS, 2010, 1
[9]   Distance approximating trees for chordal and dually chordal graphs [J].
Brandstädt, A ;
Chepoi, V ;
Dragan, F .
JOURNAL OF ALGORITHMS, 1999, 30 (01) :166-184
[10]  
Brinkmann G., 2001, ANN COMB, V5, P61, DOI [DOI 10.1007/S00026-001-8007-7, DOI 10.1007/S00026]