Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes

被引:34
|
作者
Li, Yan-Hui
Zhao, Yi Min
Ma, Ren Zhi
Zhu, Yan Qiu
Fisher, Niles
Jin, Yi Zheng
Zhang, Xin Ping
机构
[1] Univ Nottingham, Sch Mech Mat & Mfg Engn, Nottingham NG7 2RD, England
[2] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
[3] NanoMat Ltd, IL-74140 Ness Ziona, Israel
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2006年 / 110卷 / 37期
关键词
D O I
10.1021/jp062427j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
WOx (2 < x < 3) and WS2 nanostructures have been widely praised due to applications as catalysts, solid lubricants, field emitters, and optical components. Many methods have been developed to fabricate these nanomaterials; however, most attention was focused on the same dimensional transformation from WOx nanoparticles or nanorods to WS2 nanoparticles or nanotubes. In a solid-vapor reaction, by simply controlling the quantity of water vapor and reaction temperature, we have realized the transformation from quasi-zero-dimensional WS2 nanoparticles to one-dimensional W18O49 nanorods, and subsequent sulfuration reactions have further converted these W18O49 nanorods into WS2 nanotubes. The reaction temperature, quantity of water vapor, and pretreatment of the WS2 nanoparticle precursors are important process parameters for long, thin, and homogeneous W18O49 nanorods growth. The morphologies, crystal structures, and circling transformation mechanisms of sulfide-oxide-sulfide are discussed, and the photoluminescence properties of the resulting nanorods are investigated using a Xe lamp under an excitation of 270 nm.
引用
收藏
页码:18191 / 18195
页数:5
相关论文
共 50 条
  • [1] NOVEL BIOPOLYMER COMPOSITES BASED ON WS2 INORGANIC NANOTUBES
    Naffakh, M.
    Silverman, T.
    Garcia, A. M.
    Moreno, D. A.
    Marco, C.
    Ellis, G.
    Zak, A.
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [2] Synthesis and characterization of WOx nanowires and their conversion to WS2 nanotubes
    Dong, LF
    Maiz, A
    Jiao, J
    SELF-ORGANIZED PROCESSES IN SEMICONDUCTOR HETEROEPITAXY, 2004, 794 : 29 - 34
  • [3] Production of WS2 nanotubes
    Zhu, YQ
    Hsu, WK
    Grobert, N
    Chang, BH
    Terrones, M
    Terrones, H
    Kroto, HW
    Walton, DRM
    Wei, BQ
    CHEMISTRY OF MATERIALS, 2000, 12 (05) : 1190 - 1194
  • [4] WS2 nanoflakes from nanotubes for electrocatalysis
    Charina L. Choi
    Ju Feng
    Yanguang Li
    Justin Wu
    Alla Zak
    Reshef Tenne
    Hongjie Dai
    Nano Research, 2013, 6 : 921 - 928
  • [5] WS2 nanoflakes from nanotubes for electrocatalysis
    Choi, Charina L.
    Feng, Ju
    Li, Yanguang
    Wu, Justin
    Zak, Alla
    Tenne, Reshef
    Dai, Hongjie
    NANO RESEARCH, 2013, 6 (12) : 921 - 928
  • [6] Nucleation of WS2 fullerenes at room temperature
    Margulis, L
    Tenne, R
    Iijima, S
    MICROSCOPY MICROANALYSIS MICROSTRUCTURES, 1996, 7 (02): : 87 - 89
  • [7] Syntactic coalescence of WS2 nanotubes
    Remskar, M
    Skraba, Z
    Sanjinés, R
    Lévy, F
    APPLIED PHYSICS LETTERS, 1999, 74 (24) : 3633 - 3635
  • [8] On the electronic structure of WS2 nanotubes
    Seifert, G
    Terrones, H
    Terrones, M
    Jungnickel, G
    Frauenheim, T
    SOLID STATE COMMUNICATIONS, 2000, 114 (05) : 245 - 248
  • [9] Excitonic resonances in WS2 nanotubes
    Staiger, Matthias
    Rafailov, Peter
    Gartsman, Konstantin
    Telg, Hagen
    Krause, Matthias
    Radovsky, Gal
    Zak, Alla
    Thomsen, Christian
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [10] Chemical Unzipping of WS2 Nanotubes
    Nethravathi, C.
    Jeffery, A. Anto
    Rajamathi, Michael
    Kawamoto, Naoyuki
    Tenne, Reshef
    Golberg, Dmitri
    Bando, Yoshio
    ACS NANO, 2013, 7 (08) : 7311 - 7317