WELL-POSEDNESS AND LONG TIME BEHAVIOR OF A HYPERBOLIC CAGINALP PHASE-FIELD SYSTEM

被引:0
作者
Moukoko, Daniel [1 ]
机构
[1] Tech Univ Marien NGOUABI, Fac Sci & Tech, Dept Math, BP 69, Brazzaville, Rep Congo
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2014年 / 4卷 / 02期
关键词
Caginalp system; well-posedness; dissipativity; global attractor; exponential attractors; asymptotic expansions; DYNAMIC BOUNDARY-CONDITIONS; EXPONENTIAL ATTRACTORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove the continuity of exponential attractors for a hyperbolic perturbed Caginalp system to an exponential attractor for the limit parabolic-hyperbolic Caginalp system. The symmetric distance between the perturbed and unperturbed exponential attractors in terms of the perturbation parameter is obtained.
引用
收藏
页码:151 / 196
页数:46
相关论文
共 14 条
[1]  
Babin A. V., 1992, STUDIES MATH ITS APP, V25
[2]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[3]   On the Caginalp system with dynamic boundary conditions and singular potentials [J].
Cherfils, Laurence ;
Miranville, Alain .
APPLICATIONS OF MATHEMATICS, 2009, 54 (02) :89-115
[4]   ASYMPTOTIC BEHAVIOR OF THE CAGINALP PHASE-FIELD SYSTEM WITH COUPLED DYNAMIC BOUNDARY CONDITIONS [J].
Conti, Monica ;
Gatti, Stefania ;
Miranville, Alain .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03) :485-505
[5]  
Eden A., 1994, RES APPL MATH MASSON
[6]   Exponential attractors for a singularly perturbed Cahn-Hilliard system [J].
Efendiev, M ;
Miranville, A ;
Zelik, S .
MATHEMATISCHE NACHRICHTEN, 2004, 272 :11-31
[7]   Infinite dimensional exponential attractors for a non-autonomous react ion-diffusion system [J].
Efendiev, M ;
Miranville, A ;
Zelik, S .
MATHEMATISCHE NACHRICHTEN, 2003, 248 :72-96
[8]  
Fabrie P, 2004, DISCRETE CONT DYN-A, V10, P211
[9]   Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials [J].
Grasselli, Maurizio ;
Miranville, Alain ;
Pata, Vittorino ;
Zelik, Sergey .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (13-14) :1475-1509
[10]  
Lyusternik L.A., AM MATH SOC TRANSL S, V2, P20