A MULTIGRID ALGORITHM FOR THE p-VERSION OF THE VIRTUAL ELEMENT METHOD

被引:29
作者
Antonietti, Paola F. [1 ]
Mascotto, Lorenzo [2 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Polygonal meshes; virtual element methods; p Galerkin methods; p multigrid; DISCONTINUOUS GALERKIN METHODS; DIFFUSION-PROBLEMS; ELLIPTIC PROBLEMS; ORDER; DISCRETIZATIONS; CONVERGENCE; SCHEMES; MESHES;
D O I
10.1051/m2an/2018007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a multigrid algorithm for the solution of the linear systems of equations stemming from the p-version of the virtual element discretization of a two-dimensional Poisson problem. The sequence of coarse spaces are constructed decreasing progressively the polynomial approximation degree of the virtual element space, as in standard p-multigrid schemes. The construction of the interspace operators relies on auxiliary virtual element spaces, where it is possible to compute higher order polynomial projectors. We prove that the multigrid scheme is uniformly convergent, provided the number of smoothing steps is chosen sufficiently large. We also demonstrate that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom that can be employed to accelerate the convergence of classical Krylov-based iterative schemes. Numerical experiments validate the theoretical results.
引用
收藏
页码:337 / 364
页数:28
相关论文
共 62 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], SPRINGER SCI BUSINES
[3]  
[Anonymous], 2008, The Mathematical Theory of Finite Element Methods
[4]  
[Anonymous], INT J NUMER METHODS
[5]  
[Anonymous], MS MODEL SIMUL APPL
[6]  
[Anonymous], 552016 MOX
[7]  
[Anonymous], 2003, SOBOLEV SPACES
[8]  
[Anonymous], 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables
[9]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[10]  
Antonietti PF, 2017, CALCOLO, V54, P1169, DOI 10.1007/s10092-017-0223-6