Existence of vector bundles and global resolutions for singular surfaces

被引:12
作者
Schröer, S
Vezzosi, G
机构
[1] Univ Bayreuth, Inst Math, D-95440 Bayreuth, Germany
[2] Dipartimento Matemat Applicata G Sansone, I-50139 Florence, Italy
关键词
global resolutions; vector bundles; singular surfaces; K-groups;
D O I
10.1112/S0010437X0300071X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two results about vector bundles on singular algebraic surfaces. First, on proper surfaces there are vector bundles of rank two with arbitrarily large second Chern number and fixed determinant. Second, on separated normal surfaces any coherent sheaf is the quotient of a vector bundle. As a consequence, for such surfaces the Quillen K-theory of vector bundles coincides with the Waldhausen K-theory of perfect complexes. Examples show that, on non-separated schemes, usually many coherent sheaves are not quotients of vector bundles.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 22 条
[1]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, V267
[2]  
BANICA C, 1987, J REINE ANGEW MATH, V378, P1
[3]  
Eisenbud D., 1995, GRAD TEXTS MATH, V150
[4]  
Graham Evans E., 1985, LONDON MATH SOC LECT, V106, DOI 10.1017/CBO9781107325661
[5]  
Grothendieck A, 1971, LECT NOTES MATH, V225
[6]  
Grothendieck A., 1966, PUBL MATH I HAUTES E, V28
[7]  
Grothendieck A., 1961, PUBL MATH I HAUTES E, V11
[8]  
Grothendieck A., 1965, PUBL MATH I HAUTES E, V24
[9]  
Grothendieck A., 1967, PUBL MATH I HAUTES E, V32
[10]  
GROTHENDIECK A, 1970, GRUNDLEHREN MATH WIS, V166