Inequalities for q-gamma function ratios

被引:4
作者
Das, Sourav [1 ]
机构
[1] Natl Inst Technol, Dept Math, Hamirpur 177005, Himachal Prades, India
关键词
Gamma functions; Inequalities; q-analogue; Bohr-Mollerup theorem;
D O I
10.1007/s13324-017-0198-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work inequalities for the ratios of q-gamma function are obtained which generalize the results obtained independently by Artin, Wendel, Gautschi and Jameson. Using these inequalities bounds for Gaussian binomial coefficients and q-Wallis ratio are derived and Bohr-Mollerup theorem is also proved as applications. The recent methods developed for gamma functions are used in order to obtain main results.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1999, SPECIAL FUNCTIONS
[2]  
[Anonymous], 1978, Applicable Anal.
[3]  
[Anonymous], 2004, ENCY MATH ITS APPL
[4]  
Aral A, 2013, OPERATOR THEORY
[5]  
Artin E, 1931, Einfuhrung in die Theorie der Gammafunktion
[6]   On some properties of the gamma function [J].
Batir, Necdet .
EXPOSITIONES MATHEMATICAE, 2008, 26 (02) :187-196
[7]   Monotonicity properties of q-digamma and q-trigamma functions [J].
Batir, Necdet .
JOURNAL OF APPROXIMATION THEORY, 2015, 192 :336-346
[8]   q-Extensions of some estimates associated with the digamma function [J].
Batir, Necdet .
JOURNAL OF APPROXIMATION THEORY, 2013, 174 :54-64
[9]   THE q-DEFORMED GAMMA FUNCTION AND q-DEFORMED POLYGAMMA FUNCTION [J].
Chung, Won Sang ;
Kim, Taekyun ;
Mansour, Toufik .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) :1155-1161
[10]   THE Q-GAMMA, Q-BETA FUNCTIONS, AND Q-MULTIPLICATION FORMULA [J].
CHUNG, WS ;
KANG, HJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4268-4276