On the topology of infinite regular and chiral maps

被引:3
作者
Arredondo, John A. [1 ]
Ramirez Maluendas, Camilo [1 ]
Valdez, Ferran [2 ]
机构
[1] Fdn Univ Konrad Lorenz, Bogota 110231, Colombia
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia, Morelia 58190, Michoacan, Mexico
关键词
Infinite surface; Regular and chiral polytope; GRAPHS;
D O I
10.1016/j.disc.2016.12.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that infinite regular and chiral maps can only exist on surfaces with one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with positive genus, can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1180 / 1186
页数:7
相关论文
共 21 条
[1]   The topology of the minimal regular covers of the Archimedean tessellations [J].
Coulbois, Thierry ;
Pellicer, Daniel ;
Raggi, Miguel ;
Ramirez, Camilo ;
Valdez, Ferran .
ADVANCES IN GEOMETRY, 2015, 15 (01) :77-91
[2]  
Coxeter HSM, 1937, P LOND MATH SOC, V43, P33
[3]   On the terminations of topological spaces and groups. [J].
Freudenthal, H .
MATHEMATISCHE ZEITSCHRIFT, 1931, 33 :692-713
[4]   TOPOLOGY OF GENERIC LEAVES [J].
GHYS, E .
ANNALS OF MATHEMATICS, 1995, 141 (02) :387-422
[5]  
GRAVER JE, 1997, MEM AM MATH SOC, V0126, P00601, DOI DOI 10.1090/MEM0/0601
[6]  
Jean-Pierre Serre Trees, 2003, SPRINGER MONOGRAPHS
[7]  
JONES GA, 1978, P LOND MATH SOC, V37, P273
[8]   ON GENERA OF GRAPHS OF GROUP PRESENTATIONS [J].
LEVINSON, H .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) :277-&
[9]   EMBEDDINGS OF INFINITE-GRAPHS [J].
MOHAR, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) :29-43
[10]   Tree amalgamation of graphs and tessellations of the Cantor sphere [J].
Mohar, Bojan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (05) :740-753