Improving Hyperspectral Image Classification Using Spatial Preprocessing

被引:69
作者
Velasco-Forero, Santiago [1 ]
Manian, Vidya [2 ]
机构
[1] Sch Mines, Ctr Math Morphol, Paris, France
[2] Univ Puerto Rico, Dept Elect & Comp Engn, Mayaguez, PR 00681 USA
关键词
Graph classification; hyperspectral images; semisupervised learning; NONLINEAR DIFFUSION; SCHEMES;
D O I
10.1109/LGRS.2009.2012443
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spatial smoothing over the original hyperspectral data based on wavelet and anisotropic partial differential equations is incorporated using composite kernel in graph-based classifiers. The kernels combine spectral-spatial relationships using the smoothed and original hyperspectral images. Experiments with different real hyperspectral scenarios are presented. Comparison with recent graph-based methods shows that the proposed scheme gives better classification with lower computational cost.
引用
收藏
页码:297 / 301
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 2005, SEMISUPERVISED LEARN
[2]  
[Anonymous], 2003, WILEY HOBOKEN
[3]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[4]   Semi-supervised learning on Riemannian manifolds [J].
Belkin, M ;
Niyogi, P .
MACHINE LEARNING, 2004, 56 (1-3) :209-239
[5]  
Bennett KP, 1999, ADV NEUR IN, V11, P368
[6]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[7]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[8]   Semi-supervised graph-based hyperspectral image classification [J].
Camps-Valls, Gustavo ;
Bandos, Tatyana V. ;
Zhou, Dengyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3044-3054
[9]  
CHAPELLE O, 2007, P C ADV NEUR INF PRO, V19, P217
[10]  
Chapelle O., 2005, P 10 INT WORKSH ART, P57