SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data

被引:21
作者
Ding, Jun [1 ]
Hu, Haiyan [1 ]
Li, Xiaoman [2 ]
机构
[1] Univ Cent Florida, Dept Elect Engn & Comp Sci, Orlando, FL 32816 USA
[2] Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
DNA-BINDING-SITES; CIS-REGULATORY MODULES; HUMAN GENOME; CHROMATIN-IMMUNOPRECIPITATION; GENE-EXPRESSION; PREDICTION; DISCOVERY; PROFILES; ELEMENTS; NETWORK;
D O I
10.1093/nar/gkt1288
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of transcription factor binding motifs is important for the study of gene transcriptional regulation. The chromatin immunoprecipitation (ChIP), followed by massive parallel sequencing (ChIP-seq) experiments, provides an unprecedented opportunity to discover binding motifs. Computational methods have been developed to identify motifs from ChIP-seq data, while at the same time encountering several problems. For example, existing methods are often not scalable to the large number of sequences obtained from ChIP-seq peak regions. Some methods heavily rely on well-annotated motifs even though the number of known motifs is limited. To simplify the problem, de novo motif discovery methods often neglect underrepresented motifs in ChIP-seq peak regions. To address these issues, we developed a novel approach called SIOMICS to de novo discover motifs from ChIP-seq data. Tested on 13 ChIP-seq data sets, SIOMICS identified motifs of many known and new cofactors. Tested on 13 simulated random data sets, SIOMICS discovered no motif in any data set. Compared with two recently developed methods for motif discovery, SIOMICS shows advantages in terms of speed, the number of known cofactor motifs predicted in experimental data sets and the number of false motifs predicted in random data sets. The SIOMICS software is freely available at http://eecs.ucf.edu/similar to xiaoman/ SIOMICS/SIOMICS.html.
引用
收藏
页数:9
相关论文
共 50 条
[41]   FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets [J].
Zhang, Shaoqiang ;
Liang, Ying ;
Wang, Xiangyun ;
Su, Zhengchang ;
Chen, Yong .
DNA RESEARCH, 2019, 26 (03) :231-242
[42]   7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs [J].
Jonas Ibn-Salem ;
Miguel A. Andrade-Navarro .
BMC Genomics, 20
[43]   MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data [J].
Ozaki, Haruka ;
Iwasaki, Wataru .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2016, 63 :62-72
[44]   coMOTIF: a mixture framework for identifying transcription factor and a coregulator motif in ChIP-seq Data [J].
Xu, Mengyuan ;
Weinberg, Clarice R. ;
Umbach, David M. ;
Li, Leping .
BIOINFORMATICS, 2011, 27 (19) :2625-2632
[45]   RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets [J].
Thomas-Chollier, Morgane ;
Herrmann, Carl ;
Defrance, Matthieu ;
Sand, Olivier ;
Thieffry, Denis ;
van Helden, Jacques .
NUCLEIC ACIDS RESEARCH, 2012, 40 (04) :e31
[46]   Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data [J].
Waszak, Sebastian M. ;
Kilpinen, Helena ;
Gschwind, Andreas R. ;
Orioli, Andrea ;
Raghav, Sunil K. ;
Witwicki, Robert M. ;
Migliavacca, Eugenia ;
Yurovsky, Alisa ;
Lappalainen, Tuuli ;
Hernandez, Nouria ;
Reymond, Alexandre ;
Dermitzakis, Emmanouil T. ;
Deplancke, Bart .
BIOINFORMATICS, 2014, 30 (02) :165-171
[47]   AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification [J].
Hiranuma, Naozumi ;
Lundberg, Scott M. ;
Lee, Su-In .
NUCLEIC ACIDS RESEARCH, 2019, 47 (10)
[48]   Broadly Applicable Control Approaches Improve Accuracy of ChIP-Seq Data [J].
Petrie, Meghan V. ;
He, Yiwei ;
Gan, Yan ;
Ostrow, Andrew Zachary ;
Aparicio, Oscar M. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
[49]   PeakRanger: A cloud-enabled peak caller for ChIP-seq data [J].
Feng, Xin ;
Grossman, Robert ;
Stein, Lincoln .
BMC BIOINFORMATICS, 2011, 12
[50]   Large-Scale Quality Analysis of Published ChIP-seq Data [J].
Marinov, Georgi K. ;
Kundaje, Anshul ;
Park, Peter J. ;
Wold, Barbara J. .
G3-GENES GENOMES GENETICS, 2014, 4 (02) :209-223