Molecular dynamics study of creep mechanisms in nanotwinned metals

被引:36
作者
Jiao, Shuyin [1 ]
Kulkarni, Yashashree [1 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Twin boundaries; Molecular dynamics; Creep; Nanotwinned metals; BOUNDARY DIFFUSION CREEP; STRAIN-RATE SENSITIVITY; NANOCRYSTALLINE MATERIALS; ACTIVATION VOLUME; MAXIMUM STRENGTH; DEFORMATION; FCC; DUCTILITY; STRESS; CU;
D O I
10.1016/j.commatsci.2015.08.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanotwinned structures have shown great promise as optimal motifs for evading the strength-ductility trade-off. In this paper, we present a study of high temperature creep in polycrystalline nanotwinned face-centered cubic metals using molecular dynamics. The simulations reveal that the nanotwinned metals exhibit greater creep resistance with decreasing twin boundary spacing over a large range of applied stresses. The findings also indicate that the presence of twin boundaries entails higher stress for the onset of power-law creep compared to the nanocrystalline counterparts. Nanotwinned metals with very high density of twin boundaries exhibit a new creep deformation mechanism at high stresses governed by twin boundary migration. This is in contrast to nanocrystalline and nanotwinned metals with larger twin spacing, which exhibit a more conventional transition from grain boundary diffusion and sliding to dislocation nucleation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:254 / 260
页数:7
相关论文
共 39 条
[21]   Structural stability and lattice defects in copper:: Ab initio, tight-binding, and embedded-atom calculations -: art. no. 224106 [J].
Mishin, Y ;
Mehl, MJ ;
Papaconstantopoulos, DA ;
Voter, AF ;
Kress, JD .
PHYSICAL REVIEW B, 2001, 63 (22) :2241061-22410616
[22]   Creep and superplasticity in nanocrystalline materials: current understanding and future prospects [J].
Mohamed, FA ;
Li, Y .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 298 (1-2) :1-15
[23]  
MUKHERJEE AK, 1969, ASM TRANS Q, V62, P155
[24]  
Nabarro F.R.N., 1948, P C STRENGTH SOL PHY, V75
[25]   MECHANICAL-BEHAVIOR OF NANOCRYSTALLINE CU AND PD [J].
NIEMAN, GW ;
WEERTMAN, JR ;
SIEGEL, RW .
JOURNAL OF MATERIALS RESEARCH, 1991, 6 (05) :1012-1027
[26]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[27]  
Riedel H., 1987, FRACTURE HIGH TEMPER
[28]   Creep of nanocrystalline Cu, Pd, and Al-Zr [J].
Sanders, PG ;
Rittner, M ;
Kiedaisch, E ;
Weertman, JR ;
Kung, H ;
Lu, YC .
NANOSTRUCTURED MATERIALS, 1997, 9 (1-8) :433-440
[29]   Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins [J].
Shute, C. J. ;
Myers, B. D. ;
Xie, S. ;
Li, S. -Y. ;
Barbee, T. W., Jr. ;
Hodge, A. M. ;
Weertman, J. R. .
ACTA MATERIALIA, 2011, 59 (11) :4569-4577
[30]   Anomalous deformation twinning in fcc metals at high temperatures [J].
Sinha, Tanushree ;
Kulkarni, Yashashree .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (11)