The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle

被引:20
作者
Hu, Zhengyan [1 ,2 ]
Zhao, Liang [1 ,2 ]
Zhang, Hongyan [1 ,2 ]
Zhang, Yi [1 ,2 ]
Wu, Ren'an [1 ]
Zou, Hanfa [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Natl Chromatog R&A Ctr, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Protein corona; Digestion; Immobilized trypsin; Magnetic nanoparticle; Fe3O4; Plasma; SURFACE-PROPERTIES; NANOMATERIALS; ADSORPTION; SIZE;
D O I
10.1016/j.chroma.2014.01.077
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Proteins interacting with nanoparticles would form the protein coronas on the surface of nanoparticles in biological systems, which would critically impact the biological identities of nanoparticles and/or result in the physiological and pathological consequences. The enzymatic digestion of protein corona was the primary step to achieve the identification of protein components of the protein corona for the bottomup proteomic approaches. In this study, the investigation on the tryptic digestion of protein corona by the immobilized trypsin on a magnetic nanoparticle was carried out for the first time. As a comparison with the usual overnight long-time digestion and the severe self-digestion of free trypsin, the on-bead digestion of protein corona by the immobilized trypsin could be accomplished within 1 h, along with the significantly reduced self-digestion of trypsin and the improved reproducibility on the identification of proteins by the mass spectrometry-based proteomic approach. It showed that the number of identified bovine serum (BS) proteins on the commercial Fe3O4 nanoparticles was increased by 13% for the immobilized trypsin with 1 h digestion as compared to that of using free trypsin with even overnight digestion. In addition, the on-bead digestion of using the immobilized trypsin was further applied on the identification of human plasma protein corona on the commercial Fe3O4 nanoparticles, which leads the efficient digestion of the human plasma proteins and the identification of 149 human plasma proteins corresponding to putative critical pathways and biological processes. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 37 条
[1]   Nanomaterials: Applications in Cancer Imaging and Therapy [J].
Barreto, Jose A. ;
O'Malley, William ;
Kubeil, Manja ;
Graham, Bim ;
Stephan, Holger ;
Spiccia, Leone .
ADVANCED MATERIALS, 2011, 23 (12) :H18-H40
[2]   Detailed identification of plasma proteins adsorbed on copolymer nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Foy, Martina ;
Berggard, Tord ;
Donnelly, Seamas C. ;
Cagney, Gerard ;
Linse, Sara ;
Dawson, Kenneth A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (30) :5754-5756
[3]   Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Lindman, Stina ;
Berggard, Tord ;
Thulin, Eva ;
Nilsson, Hanna ;
Dawson, Kenneth A. ;
Linse, Sara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2050-2055
[4]   Monodisperse magnetic single-crystal ferrite microspheres [J].
Deng, H ;
Li, XL ;
Peng, Q ;
Wang, X ;
Chen, JP ;
Li, YD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (18) :2782-2785
[5]   Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation [J].
Deng, Zhou J. ;
Liang, Mingtao ;
Monteiro, Michael ;
Toth, Istvan ;
Minchin, Rodney F. .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :39-44
[6]   Differential plasma protein binding to metal oxide nanoparticles [J].
Deng, Zhou J. ;
Mortimer, Gysell ;
Schiller, Tara ;
Musumeci, Anthony ;
Martin, Darren ;
Minchin, Rodney F. .
NANOTECHNOLOGY, 2009, 20 (45)
[7]   Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution [J].
Dobrovolskaia, Marina A. ;
Aggarwal, Parag ;
Hall, Jennifer B. ;
McNeil, Scott E. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :487-495
[8]  
Dobrovolskaia MA, 2009, NAT NANOTECHNOL, V4, P411, DOI [10.1038/nnano.2009.175, 10.1038/NNANO.2009.175]
[9]   Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials [J].
Dutta, Debamitra ;
Sundaram, Shanmugavelayutham Kamakshi ;
Teeguarden, Justin Gary ;
Riley, Brian Joseph ;
Fifield, Leonard Sheldon ;
Jacobs, Jon Morrell ;
Addleman, Shane Raymond ;
Kaysen, George Alan ;
Moudgil, Brij Mohan ;
Weber, Thomas Joseph .
TOXICOLOGICAL SCIENCES, 2007, 100 (01) :303-315
[10]   The influence of protein adsorption on nanoparticle association with cultured endothelial cells [J].
Ehrenberg, Morton S. ;
Friedman, Alan E. ;
Finkelstein, Jacob N. ;
Oberdoerster, Guenter ;
McGrath, James L. .
BIOMATERIALS, 2009, 30 (04) :603-610