Greenberger-Horne-Zeilinger paradoxes for many qudits

被引:75
作者
Cerf, NJ
Massar, S
Pironio, S
机构
[1] Free Univ Brussels, Ecole Polytech, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Serv Phys Theor, B-1050 Brussels, Belgium
关键词
Greenberger-Horne-Zeilinger paradoxes - Pauli matrices - Quantum error correcting codes - Qudits;
D O I
10.1103/PhysRevLett.89.080402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct Greenberger-Horne-Zeilinger (GHZ) contradictions for three or more parties sharing an entangled state, the dimension of each subsystem being an even integer d. The simplest example that goes beyond the standard GHZ paradox (three qubits) involves five ququats (d=4). We then examine the criteria that a GHZ paradox must satisfy in order to be genuinely M partite and d dimensional.
引用
收藏
页码:1 / 080402
页数:4
相关论文
共 9 条
  • [1] Multiparty multilevel Greenberger-Horne-Zeilinger states
    Cabello, A
    [J]. PHYSICAL REVIEW A, 2001, 63 (02): : 022104 - 022101
  • [2] Substituting quantum entanglement for communication
    Cleve, R
    Buhrman, H
    [J]. PHYSICAL REVIEW A, 1997, 56 (02): : 1201 - 1204
  • [3] Quantum code words contradict local realism
    DiVincenzo, DP
    Peres, A
    [J]. PHYSICAL REVIEW A, 1997, 55 (06) : 4089 - 4092
  • [4] Bell inequality, Bell states and maximally entangled states for n qubits
    Gisin, N
    Bechmann-Pasquinucci, H
    [J]. PHYSICS LETTERS A, 1998, 246 (1-2) : 1 - 6
  • [5] Encoding a qubit in an oscillator
    Gottesman, D
    Kitaev, A
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 123101 - 1231021
  • [6] GREENBERGER DM, 1989, FUND THEOR, V37, P69
  • [7] SIMPLE UNIFIED FORM FOR THE MAJOR NO-HIDDEN-VARIABLES THEOREMS
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (27) : 3373 - 3376
  • [8] THE BREAKDOWN OF QUANTUM NONLOCALITY IN THE CLASSICAL LIMIT
    PAGONIS, C
    REDHEAD, MLG
    CLIFTON, RK
    [J]. PHYSICS LETTERS A, 1991, 155 (8-9) : 441 - 444
  • [9] Greenberger-Horne-Zeilinger paradoxes with symmetric multiport beam splitters
    Zukowski, M
    Kaszlikowski, D
    [J]. PHYSICAL REVIEW A, 1999, 59 (05): : 3200 - 3203