Recent developments in pressure retarded osmosis for desalination and power generation

被引:55
|
作者
Tawalbeh, Muhammad [1 ]
Al-Othman, Amani [2 ]
Abdelwahab, Noun [2 ]
Alami, Abdul Hai [1 ,3 ]
Olabi, Abdul Ghani [1 ,4 ]
机构
[1] Univ Sharjah, Sustainable & Renewable Energy Engn Dept, POB 27272, Sharjah, U Arab Emirates
[2] Amer Univ Sharjah, Dept Chem Engn, POB 26666, Sharjah, U Arab Emirates
[3] Univ Sharjah, Ctr Adv Mat Res, POB 27272, Sharjah, U Arab Emirates
[4] Aston Univ, Sch Engn & Appl Sci, Mech Engn & Design, Birmingham B4 7ET, W Midlands, England
关键词
Pressure retarded osmosis; Osmotic power; Salinity gradient; Desalination; Power generation; HOLLOW-FIBER MEMBRANES; INTERNAL CONCENTRATION POLARIZATION; OSMOTIC ENERGY GENERATION; FILM COMPOSITE MEMBRANES; PRO HYBRID SYSTEM; REVERSE-OSMOSIS; SALINITY-GRADIENT; HIGH-PERFORMANCE; THERMODYNAMIC ANALYSIS; WATER DESALINATION;
D O I
10.1016/j.rser.2020.110492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
When two streams of different salinities are mixed, Gibbs free energy of mixing is released. This energy can be harvested and further converted to electric energy through pressure retarded osmosis (PRO) process. Despite several improvements on PRO over the past decades, there still exist several technical issues pertinent to its adequate implementation that remain unresolved. These issues are mainly (i) water transport in the membrane, (ii) membrane material, (iii) fouling, (iv) process efficiency, and (v) techno-economic viability. Different process parameters such as temperature, type of draw solution, feed concentration, and membrane type directly affect the efficiency and power density of PRO. In this review, major trends of PRO (and hybrid plants) are analyzed and the suggested improvements of PRO membranes are discussed. Since potential side-benefits of PRO include electricity production and the treatment of rejected brine from desalination, the process presents a unique path to utilize all these advantages. Therefore, PRO is also coupled with other osmotic, desalination processes to maximize efficiency. The amount of useful energy from PRO would probably be enormous if this was exploited globally. There are several questions remain unanswered about the overall feasibility of PRO as a stand-alone process. This paper offers a comprehensive background and overview on the developments in PRO to enhance its power density and feasibility.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Recent developments in reverse osmosis desalination membranes
    Li, Dan
    Wang, Huanting
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (22) : 4551 - 4566
  • [22] Salinity gradient energy generation by pressure retarded osmosis: A review
    Gonzales, Ralph Rolly
    Abdel-Wahab, Ahmed
    Adham, Samer
    Han, Dong Suk
    Phuntsho, Sherub
    Suwaileh, Wafa
    Hilal, Nidal
    Shon, Ho Kyong
    DESALINATION, 2021, 500 (500)
  • [23] Model for evaluating the electric power output of pressure retarded osmosis generation plants
    Llamas-Rivas M.
    Pizano-Martínez A.
    Fuerte-Esquivel C.R.
    Merchan-Villalba L.R.
    Gutiérrez-Martínez V.J.
    International Marine Energy Journal, 2020, 3 (01): : 1 - 10
  • [24] Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods
    Alsvik, Inger Lise
    Hagg, May-Britt
    POLYMERS, 2013, 5 (01): : 303 - 327
  • [25] Reverse Osmosis-Pressure Retarded Osmosis hybrid system: Modelling, simulation and optimization
    Senthil, S.
    Senthilmurugan, S.
    DESALINATION, 2016, 389 : 78 - 97
  • [26] Generating Osmotic Power Using Waste Effluents for Pressure-Retarded Osmosis
    AL-Musawi, Osamah A. H.
    Mohammad, Abdul Wahab
    Mahood, Hameed B.
    Ang, Wei Lun
    Mahmoudi, Ebrahim
    Kadhum, Abdul Amir H.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (06) : 4295 - 4311
  • [27] Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance
    Altaee, Ali
    Palenzuela, Patricia
    Zaragoza, Guillermo
    AlAnezi, Adnan Alhathal
    APPLIED ENERGY, 2017, 191 : 328 - 345
  • [28] Applicability of Pressure Retarded Osmosis Power Generation Technology in Sri Lanka
    Karunarathne, H. D. S. S.
    Walpalage, S.
    10TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2013, 34 : 211 - 217
  • [29] Economic evaluation of the reverse osmosis and pressure retarded osmosis hybrid desalination process
    Choi, Yongjun
    Shin, Yonghyun
    Cho, Hyeongrak
    Jang, Yongsun
    Hwang, Tae-Mun
    Lee, Sangho
    DESALINATION AND WATER TREATMENT, 2016, 57 (55) : 26680 - 26691
  • [30] Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation
    Han, Gang
    Zhang, Sui
    Li, Xue
    Chung, Tai-Shung
    PROGRESS IN POLYMER SCIENCE, 2015, 51 : 1 - 27