Recent developments in pressure retarded osmosis for desalination and power generation

被引:55
|
作者
Tawalbeh, Muhammad [1 ]
Al-Othman, Amani [2 ]
Abdelwahab, Noun [2 ]
Alami, Abdul Hai [1 ,3 ]
Olabi, Abdul Ghani [1 ,4 ]
机构
[1] Univ Sharjah, Sustainable & Renewable Energy Engn Dept, POB 27272, Sharjah, U Arab Emirates
[2] Amer Univ Sharjah, Dept Chem Engn, POB 26666, Sharjah, U Arab Emirates
[3] Univ Sharjah, Ctr Adv Mat Res, POB 27272, Sharjah, U Arab Emirates
[4] Aston Univ, Sch Engn & Appl Sci, Mech Engn & Design, Birmingham B4 7ET, W Midlands, England
来源
RENEWABLE & SUSTAINABLE ENERGY REVIEWS | 2021年 / 138卷 / 138期
关键词
Pressure retarded osmosis; Osmotic power; Salinity gradient; Desalination; Power generation; HOLLOW-FIBER MEMBRANES; INTERNAL CONCENTRATION POLARIZATION; OSMOTIC ENERGY GENERATION; FILM COMPOSITE MEMBRANES; PRO HYBRID SYSTEM; REVERSE-OSMOSIS; SALINITY-GRADIENT; HIGH-PERFORMANCE; THERMODYNAMIC ANALYSIS; WATER DESALINATION;
D O I
10.1016/j.rser.2020.110492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
When two streams of different salinities are mixed, Gibbs free energy of mixing is released. This energy can be harvested and further converted to electric energy through pressure retarded osmosis (PRO) process. Despite several improvements on PRO over the past decades, there still exist several technical issues pertinent to its adequate implementation that remain unresolved. These issues are mainly (i) water transport in the membrane, (ii) membrane material, (iii) fouling, (iv) process efficiency, and (v) techno-economic viability. Different process parameters such as temperature, type of draw solution, feed concentration, and membrane type directly affect the efficiency and power density of PRO. In this review, major trends of PRO (and hybrid plants) are analyzed and the suggested improvements of PRO membranes are discussed. Since potential side-benefits of PRO include electricity production and the treatment of rejected brine from desalination, the process presents a unique path to utilize all these advantages. Therefore, PRO is also coupled with other osmotic, desalination processes to maximize efficiency. The amount of useful energy from PRO would probably be enormous if this was exploited globally. There are several questions remain unanswered about the overall feasibility of PRO as a stand-alone process. This paper offers a comprehensive background and overview on the developments in PRO to enhance its power density and feasibility.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Recent developments in pressure retarded osmosis for desalination and power generation (vol 138, 110492, 2021)
    Tawalbeh, Muhammad
    Al-Othman, Amani
    Abdelwahab, Noun
    Alami, Abdul Hai
    Olabi, Abdul Ghani
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 160
  • [2] Pressure retarded osmosis: advancement in the process applications for power generation and desalination
    Altaee, Ali
    Sharif, Adel
    DESALINATION, 2015, 356 : 31 - 46
  • [3] Pressure retarded osmosis for power generation and seawater desalination: Performance analysis
    Altaee, Ali
    Zaragoza, Guillermo
    Sharif, Adel
    DESALINATION, 2014, 344 : 108 - 115
  • [4] Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination
    Altaee, Ali
    Millar, Graeme J.
    Zaragoza, Guillermo
    ENERGY, 2016, 103 : 110 - 118
  • [5] POWER GENERATION WITH PRESSURE RETARDED OSMOSIS
    Akram, Waqas
    Sharqawy, Mostafa H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6A, 2014,
  • [6] Analysis and Optimization of Pressure Retarded Osmosis for Power Generation
    Li, Mingheng
    AICHE JOURNAL, 2015, 61 (04) : 1233 - 1241
  • [7] Power generation using pressure-retarded osmosis
    Lienhard, John
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2014, 70 (11) : 10 - 11
  • [8] Pressure retarded osmosis for power generation and seawater desalination: Performance analysis (vol 344, pg 108, 2014)
    Altaee, Ali
    Zaragoza, Guillermo
    Sharif, Adel
    DESALINATION, 2014, 346 : 37 - 37
  • [9] Recent developments in reverse osmosis desalination membranes
    Li, Dan
    Wang, Huanting
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (22) : 4551 - 4566
  • [10] Power generation with pressure retarded osmosis: An experimental and theoretical investigation
    Achilli, Andrea
    Cath, Tzahi Y.
    Childress, Amy E.
    JOURNAL OF MEMBRANE SCIENCE, 2009, 343 (1-2) : 42 - 52