A Multi-objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems

被引:2
作者
Farnsworth, Michael [1 ]
Tiwari, Ashutosh [1 ]
Zhu, Meiling [2 ]
Benkhelifa, Elhadj [3 ]
机构
[1] Cranfield Univ, Mfg Informat Ctr, Cranfield, Beds, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
[3] Staffordshire Univ, Sch Comp & Digital Tech, Stoke On Trent, Staffs, England
来源
NEO 2016: RESULTS OF THE NUMERICAL AND EVOLUTIONARY OPTIMIZATION WORKSHOP NEO 2016 AND THE NEO CITIES 2016 WORKSHOP | 2018年 / 731卷
关键词
Microelectromechanical systems; MEMS and multidisciplinary; Multi-objective optimisation; Evolutionary computation; DESIGN OPTIMIZATION; COLLABORATIVE OPTIMIZATION; GENETIC ALGORITHMS; DECOMPOSITION; SIMULATION; FILTERS;
D O I
10.1007/978-3-319-64063-1_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microelectromechanical systems (MEMS) are a highly multidisciplinary field and this has large implications on their applications and design. Designers are often faced with the task of balancing the modelling, simulation and optimisation that each discipline brings in order to bring about a complete whole system. In order to aid designers, strategies for navigating this multidisciplinary environment are essential, particularly when it comes to automating design synthesis and optimisation. This paper outlines a new multi-objective and multidisciplinary strategy for the application of engineering design problems. It employs a population-based evolutionary approach that looks to overcome the limitations of past work by using a non-hierarchical architecture that allows for interaction across all disciplines during optimisation. Two case studies are presented, the first focusing on a common speed reducer design problem found throughout the literature used to validate the methodology and a more complex example of design optimisation, that of a MEMS bandpass filter. Results show good agreement in terms of performance with past multi-objective multidisciplinary design optimisation methods with respect to the first speed reducer case study, and improved performance for the design of the MEMS bandpass filter case study.
引用
收藏
页码:205 / 238
页数:34
相关论文
共 50 条
  • [1] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [2] Sensitivity of algorithm parameters and objective function scaling in multi-objective optimisation of water distribution systems
    Mala-Jetmarova, Helena
    Barton, Andrew
    Bagirov, Adil
    JOURNAL OF HYDROINFORMATICS, 2015, 17 (06) : 891 - 916
  • [3] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321
  • [4] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [5] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [6] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2) : 134 - 144
  • [7] A multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problem
    Bouzoubia, Samira, 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06): : 87 - 101
  • [8] Multi-objective Optimisation of Power Restoration in Electricity Distribution Systems
    Mendes, Alexandre
    Boland, Natashia
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 779 - +
  • [9] An evolutionary particle swarm algorithm for multi-objective optimisation
    Chen, Minyou
    Wu, Chuansheng
    Fleming, Peter
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3269 - +
  • [10] Enhanced Jaya Algorithm for Multi-objective Optimisation Problems
    Said, Rahaini Mohd
    Sallehuddin, Roselina
    Radzi, Nor Haizan Mohd
    Ali, Wan Fahmn Faiz Wan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 624 - 632