An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis

被引:5
作者
Busser, Brian W. [1 ]
Lin, Yongshun [2 ]
Yang, Yanqin [1 ]
Zhu, Jun [1 ]
Chen, Guokai [2 ]
Michelson, Alan M. [1 ]
机构
[1] NHLBI, Syst Biol Ctr, Div Intramural Res, NIH, Bethesda, MD 20892 USA
[2] NHLBI, Ctr Mol Med, NIH, Bethesda, MD 20892 USA
来源
PLOS ONE | 2015年 / 10卷 / 10期
关键词
TRANSGENIC RNAI; DROSOPHILA; MUTATIONS; CHROMATIN; NETWORKS; RESOURCE; TARGET; TINMAN; MODEL; WNT;
D O I
10.1371/journal.pone.0141066
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways.
引用
收藏
页数:16
相关论文
共 46 条
  • [1] Cardiac ion channels in health and disease
    Amin, Ahmad S.
    Tan, Hanno L.
    Wilde, Arthur A. M.
    [J]. HEART RHYTHM, 2010, 7 (01) : 117 - 126
  • [2] Regulation of chromatin by histone modifications
    Bannister, Andrew J.
    Kouzarides, Tony
    [J]. CELL RESEARCH, 2011, 21 (03) : 381 - 395
  • [3] Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions
    Beers, Jeanette
    Gulbranson, Daniel R.
    George, Nicole
    Siniscalchi, Lauren I.
    Jones, Jeffrey
    Thomson, James A.
    Chen, Guokai
    [J]. NATURE PROTOCOLS, 2012, 7 (11) : 2029 - 2040
  • [4] HCN channels Function and clinical implications
    Benarroch, Eduardo E.
    [J]. NEUROLOGY, 2013, 80 (03) : 304 - 310
  • [5] Next generation software for functional trend analysis
    Berriz, Gabriel F.
    Beaver, John E.
    Cenik, Can
    Tasan, Murat
    Roth, Frederick P.
    [J]. BIOINFORMATICS, 2009, 25 (22) : 3043 - 3044
  • [6] The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics
    Blake, Judith A.
    Bult, Carol J.
    Kadin, James A.
    Richardson, Joel E.
    Eppig, Janan T.
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D842 - D848
  • [7] Bodmer R, 2010, DEV AGING DROSOPHILA
  • [8] Embryonic Heart Progenitors and Cardiogenesis
    Brade, Thomas
    Pane, Luna S.
    Moretti, Alessandra
    Chien, Kenneth R.
    Laugwitz, Karl-Ludwig
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2013, 3 (10):
  • [9] Signaling and Transcriptional Networks in Heart Development and Regeneration
    Bruneau, Benoit G.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (03):
  • [10] Enhancer modeling uncovers transcriptional signatures of individual cardiac cell states in Drosophila
    Busser, Brian W.
    Haimovich, Julian
    Huang, Di
    Ovcharenko, Ivan
    Michelson, Alan M.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : 1726 - 1739