Photophysics and Electronic Structure of Lateral Graphene/MoS2 and Metal/MoS2 Junctions

被引:16
作者
Subramanian, Shruti [1 ,2 ]
Campbell, Quinn T. [1 ,3 ]
Moser, Simon K. [4 ,5 ,6 ]
Kiemle, Jonas [7 ,8 ]
Zimmermann, Philipp [7 ,8 ]
Seifert, Paul [7 ,8 ,9 ]
Sigger, Florian [7 ,8 ]
Sharma, Deeksha [10 ]
Al-Sadeg, Hala [1 ]
Labella, Michael, III [11 ]
Waters, Dacen [12 ]
Feenstra, Randall M. [12 ]
Koch, Roland J. [4 ]
Jozwiak, Chris [4 ]
Bostwick, Aaron [4 ]
Rotenberg, Eli [4 ]
Dabo, Ismaila [1 ]
Holleitner, Alexander W. [7 ,8 ]
Beechem, Thomas E. [13 ]
Wurstbauer, Ursula [7 ,8 ,14 ]
Robinson, Joshua A. [15 ,16 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Sandia Natl Labs, Ctr Comp Res, POB 5800, Albuquerque, NM 87185 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Univ Wurzburg, Phys Inst, D-97074 Wurzburg, Germany
[6] Univ Wurzburg, Wurzburg Dresden Cluster Excellence Ctqmat, D-97074 Wurzburg, Germany
[7] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[8] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[9] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[10] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[11] Penn State Univ, Nanofabricat Facil, University Pk, PA 16802 USA
[12] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[13] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA
[14] Univ Munster, Inst Phys, D-48149 Munster, Germany
[15] Penn State Univ, Dept Mat Sci & Engn, Ctr 2 Dimens & Layered Mat, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[16] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
photocurrent; graphene contacts; heterostructure; ARPES; Schottky barrier; molybdenum disulfide; first-principles calculations; DENSITY-FUNCTIONAL THEORY; QUANTUM DOTS; 2-DIMENSIONAL MATERIALS; CATALYSIS; OPTOELECTRONICS; PHOTOCURRENT; GAS;
D O I
10.1021/acsnano.0c02527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10x larger photocurrent is extracted at the EG/MoS2 interface when compared to the metal (Ti/Au)/MoS2 interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be similar to 2x lower than that at Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be similar to 300 nm (nano-ARPES) and DFT calculations. A bending of similar to 500 meV over a length scale of similar to 2-3 mu m in the valence band maximum of MoS2 is observed via nanoARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.
引用
收藏
页码:16663 / 16671
页数:9
相关论文
共 75 条
[1]   Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+Sensing [J].
Ananthanarayanan, Arundithi ;
Wang, Xuewan ;
Routh, Parimal ;
Sana, Barindra ;
Lim, Sierin ;
Kim, Dong-Hwan ;
Lim, Kok-Hwa ;
Li, Jun ;
Chen, Peng .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3021-3026
[2]  
AZZAM R M A, 1978, Physics Today, V31, P72
[3]   Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor [J].
Branny, Artur ;
Kumar, Santosh ;
Proux, Raphael ;
Gerardot, Brian D. .
NATURE COMMUNICATIONS, 2017, 8
[4]   A roadmap for electronic grade 2D materials [J].
Briggs, Natalie ;
Subramanian, Shruti ;
Lin, Zhong ;
Li, Xufan ;
Zhang, Xiaotian ;
Zhang, Kehao ;
Xiao, Kai ;
Geohegan, David ;
Wallace, Robert ;
Chen, Long-Qing ;
Terrones, Mauricio ;
Ebrahimi, Aida ;
Das, Saptarshi ;
Redwing, Joan ;
Hinkle, Christopher ;
Momeni, Kasra ;
van Duin, Adri ;
Crespi, Vin ;
Kar, Swastik ;
Robinson, Joshua A. .
2D MATERIALS, 2019, 6 (02)
[5]  
Byrnes S. J., 2019, MULTILAYER OPTICAL C
[6]   Voltage-dependent reconstruction of layered Bi2WO6 and Bi2MoO6 photocatalysts and its influence on charge separation for water splitting [J].
Campbell, Quinn ;
Fisher, Daniel ;
Dabo, Ismaila .
PHYSICAL REVIEW MATERIALS, 2019, 3 (01)
[7]   Quantum-continuum calculation of the surface states and electrical response of silicon in solution [J].
Campbell, Quinn ;
Dabo, Ismaila .
PHYSICAL REVIEW B, 2017, 95 (20)
[8]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[9]   Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects [J].
Chimene, David ;
Alge, Daniel L. ;
Gaharwar, Akhilesh K. .
ADVANCED MATERIALS, 2015, 27 (45) :7261-7284
[10]  
Costanzo D, 2016, NAT NANOTECHNOL, V11, P339, DOI [10.1038/nnano.2015.314, 10.1038/NNANO.2015.314]