Boltzmann hierarchies for self-interacting warm dark matter scenarios

被引:12
作者
Yunis, Rafael [1 ,2 ]
Arguelles, Carlos R. [3 ]
Nacir, Diana Lopez [4 ,5 ]
机构
[1] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[2] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Nacl La Plata, Fac Ciencias Astron & Geofis, B1900FWA, La Plata, Argentina
[4] FCEyN UBA, Dept Fis Juan Jose Giambiagi, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[5] IFIBA CONICET UBA, Fac Ciencias Exactas & Nat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
cosmological perturbation theory; dark matter theory; particle physics - cosmology connection; cosmological neutrinos; LAMBDA-CDM; REST MASS; NEUTRINO; GALAXIES; PHYSICS; HALOES; SIMULATIONS; CONSTRAINTS; CANDIDATES; LIGHT;
D O I
10.1088/1475-7516/2020/09/041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide a general framework for self-interacting warm dark matter (WDM) in cosmological perturbations, by deriving from first principles a Boltzmann hierarchy which retains certain independence from a particular interaction Lagrangian. We consider elastic interactions among the massive particles, and obtain a hierarchy which is more general than the ones usually obtained for non-relativistic (as for cold DM) or for ultra-relativistic (as for neutrinos) approximations. The more general momentum-dependent kernel integrals in the Boltzmann collision terms, are explicitly calculated for different field-mediator models, including examples of a scalar field or a massive vector field. As an application, we study the evolution of the interaction rate per particle under the relaxation time approximation, and assess when a given self-interaction is relevant in comparison with the Hubble expansion rate. Our framework aims to be a useful tool to evaluate DM self-interaction effects in the linear power spectrum, with the consequent imprints on non-linear scales of structure formation.
引用
收藏
页数:48
相关论文
共 90 条
[1]   A White Paper on keV sterile neutrino Dark Matter [J].
Adhikari, R. ;
Agostini, M. ;
Ky, N. Anh ;
Araki, T. ;
Archidiacono, M. ;
Bahr, M. ;
Baur, J. ;
Behrens, J. ;
Bezrukov, F. ;
Dev, P. S. Bhupal ;
Borah, D. ;
Boyarsky, A. ;
de Gouvea, A. ;
Pires, C. A. de S. ;
de Vega, H. J. ;
Dias, A. G. ;
Di Bari, P. ;
Djurcic, Z. ;
Dolde, K. ;
Dorrer, H. ;
Durero, M. ;
Dragoun, O. ;
Drewes, M. ;
Drexlin, G. ;
Duellmann, Ch. E. ;
Eberhardt, K. ;
Eliseev, S. ;
Enss, C. ;
Evans, N. W. ;
Faessler, A. ;
Filianin, P. ;
Fischer, V. ;
Fleischmann, A. ;
Formaggio, J. A. ;
Franse, J. ;
Fraenkle, F. M. ;
Frenk, C. S. ;
Fuller, G. ;
Gastaldo, L. ;
Garzilli, A. ;
Giunti, C. ;
Glueck, F. ;
Goodman, M. C. ;
Gonzalez-Garcia, M. C. ;
Gorbunov, D. ;
Hamann, J. ;
Hannen, V. ;
Hannestad, S. ;
Hansen, S. H. ;
Hassel, C. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01)
[2]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Boltzmann-Fokker-Planck formalism for dark matter-baryon scattering [J].
Ali-Haimoud, Yacine .
PHYSICAL REVIEW D, 2019, 99 (02)
[4]  
[Anonymous], 1980, Relativistic Kinetic Theory. Principles and Applications
[5]  
[Anonymous], 2010, A Kinetic View of Statistical Physics
[6]   Novel constraints on fermionic dark matter from galactic observables II: Galaxy scaling relations [J].
Arguelles, C. R. ;
Krut, A. ;
Rueda, J. A. ;
Ruffini, R. .
PHYSICS OF THE DARK UNIVERSE, 2019, 24
[7]   Novel constraints on fermionic dark matter from galactic observables I: The Milky Way [J].
Arguelles, C. R. ;
Krut, A. ;
Rueda, J. A. ;
Ruffini, R. .
PHYSICS OF THE DARK UNIVERSE, 2018, 21 :82-89
[8]   The role of self-interacting right-handed neutrinos in galactic structure [J].
Arguelles, C. R. ;
Mavromatos, N. E. ;
Rueda, J. A. ;
Ruffini, R. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04)
[9]  
Arguelles C.R., FORMATION STAB UNPUB
[10]   Comment on "Self-interacting warm dark matter" [J].
Atrio-Barandela, F ;
Davidson, S .
PHYSICAL REVIEW D, 2001, 64 (08)