Well-posedness and sharp uniform decay rates at the L2(Ω)-level of the Schrodinger equation with nonlinear boundary dissipation

被引:37
作者
Lasiecka, Irena [1 ]
Triggiani, Roberto [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
Schrodinger equations; nonlinear boundary damping; energy decay rates; Carleman estimates;
D O I
10.1007/s00028-006-0267-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Schrodinger equation defined on a bounded open domain of R-n and subject to a certain attractive, nonlinear, dissipative boundary feedback is ( semigroup) well-posed on L-2(Omega) for any n = 1, 2, 3,..., and, moreover, stable on L-2(Omega) for n = 2, 3, with sharp ( optimal) uniform rates of decay. Uniformity is with respect to all initial conditions contained in a given L-2(Omega)-ball. This result generalizes the corresponding linear case which was proved recently in [L-T-Z.2]. Both results critically rely - at the outset - on a far general result of interest in its own right: an energy estimate at the L-2(Omega)-level for a fully general Schrodinger equation with gradient and potential terms. The latter requires a heavy use of pseudo-differential/ micro-local machinery [L-T-Z.2, Section 10], to shift down the more natural H-1(Omega)- level energy estimate to the L-2(Omega)-level. In the present nonlinear boundary dissipation case, the resulting energy estimate is then shown to fit into the general uniform stabilization strategy, first proposed in [La-Ta.1] in the case of wave equations with nonlinear ( interior and) boundary dissipation.
引用
收藏
页码:485 / 537
页数:53
相关论文
共 34 条
[21]  
Lasiecka I., 2000, CONT MATH, V268, P227
[22]  
Lasiecka I., 2000, ENCY MATH ITS APPL, VII
[23]   STABILIZABILITY PROBLEM - HILBERT-SPACE OPERATOR DECOMPOSITION APPROACH [J].
LEVAN, N .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (09) :721-727
[24]  
LIEB EH, 1996, GRAD STUDIES MATH, V14
[25]  
Lions J-L., 1972, NONHOMOGENEOUS BOUND, DOI 10.1007/978-3-642-65217-2
[26]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE
[27]  
MACHTYNGIER E, 1990, CR ACAD SCI I-MATH, V310, P801
[28]  
Showalter R. E., 1997, MATH SURVEYS MONOGR, V49
[29]  
Simon J., 1986, ANN MAT PUR APPL, V146, P65, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[30]  
TATARU D, 1994, J MATH PURE APPL, V73, P355