State of health and charge measurements in lithium-ion batteries using mechanical stress

被引:196
|
作者
Cannarella, John [1 ]
Arnold, Craig B. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
Mechanical stress; Lithium-ion battery; State of charge (SOC); State of health (SOH); Battery management system; Solid electrolyte interface (SEI); CAPACITY FADE; VOLUME CHANGE; HIGH-POWER; GRAPHITE; CELLS; SEPARATOR; DEGRADATION; MANAGEMENT; EVOLUTION; ELECTRODE;
D O I
10.1016/j.jpowsour.2014.07.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the fundamental importance of state of health (SOH) and state of charge (SOC) measurement to lithium-ion battery systems, the determination of these parameters is challenging and remains an area of active research. Here we propose a novel method of SOH/SOC determination using mechanical measurements. We present the results of long term aging studies in which we observe stack stress to be linearly related to cell SOH for cells aged with different cycling parameters. The observed increases in stack stress are attributed to irreversible volumetric expansion of the electrodes. We discuss the use of stress measurements for SOC determination, which offers the advantage of being more sensitive to SOC than voltage as well as the ability to measure SOC in the presence of self discharge. Finally we present a simple model to explain the linear nature of the observed stress-SOH relationship. The inherent simplicity of the mechanical measurements and their relationships to SOH and SOC presented in this paper offer potential utility for the improvement of existing battery management systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [41] A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries
    Luo, Kai
    Chen, Xiang
    Zheng, Huiru
    Shi, Zhicong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 159 - 173
  • [42] A review of feature extraction toward health state estimation of lithium-ion batteries
    Li, Qingwei
    Xue, Wenli
    JOURNAL OF ENERGY STORAGE, 2025, 112
  • [43] Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries
    Zhang, Xing-yu
    Chen, Hao-Sen
    Fang, Daining
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 169 (169)
  • [44] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945
  • [45] State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks
    Wang, Yu-Chun
    Shao, Nei-Chun
    Chen, Guan-Wen
    Hsu, Wei-Shen
    Wu, Shun-Chi
    SENSORS, 2022, 22 (16)
  • [46] State of Health Estimation of Lithium-Ion Batteries Using Data Augmentation and Feature Mapping
    Yao, Wei
    Lai, Rucong
    Tian, Yong
    Li, Xiaoyu
    Tian, Jindong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4895 - 4905
  • [47] Lyapunov-based state of charge diagnosis and health prognosis for lithium-ion batteries
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2018, 397 : 352 - 360
  • [48] Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries
    Zhang, Caiping
    Wang, Le Yi
    Li, Xue
    Chen, Wen
    Yin, George G.
    Jiang, Jiuchun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) : 4948 - 4957
  • [49] Hybrid model for estimating State of Charge of lithium-ion batteries
    Fernandez-Grandon, Carlos
    Alavia, Wilson
    Soto, Ismael
    2024 14TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING, CSNDSP 2024, 2024, : 443 - 448
  • [50] State of Health Estimation Methods for Lithium-Ion Batteries
    Nuroldayeva, Gulzat
    Serik, Yerkin
    Adair, Desmond
    Uzakbaiuly, Berik
    Bakenov, Zhumabay
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023 (NA)