Liouville Type Theorems for General Integral System with Negative Exponents

被引:5
|
作者
Liu, Zhao [1 ]
Chen, Lu [2 ]
Wang, Xumin [2 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 03期
关键词
integral system; Liouville type theorems; method of moving spheres; LITTLEWOOD-SOBOLEV INEQUALITY; POSITIVE SOLUTIONS; MOVING SPHERES; EQUATIONS; CLASSIFICATION;
D O I
10.11650/tjm/170810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a Liouville type theorem for the following integral system with negative exponents {u(x) = integral(Rn) vertical bar x - y vertical bar(nu) f(u, v) (y) dy, x is an element of R-n, v(x) = integral(Rn) vertical bar x - y vertical bar(nu) g(u, v) (y) dy, x is an element of R-n, where n >= 1, nu > 0, and f, g are continuous functions defined on R+ X R+. Under nature structure conditions on f and g, we classify each pair of positive solutions for above integral system by using the method of moving sphere in integral forms. Moreover, some other Liouville theorems are established for similar integral systems.
引用
收藏
页码:661 / 675
页数:15
相关论文
共 50 条