Snipping for robust k-means clustering under component-wise contamination

被引:16
|
作者
Farcomeni, Alessio [1 ]
机构
[1] Univ Roma La Sapienza, Dept Publ Hlth & Infect Dis, I-00185 Rome, Italy
关键词
Clustering; k-Means; Outliers; Robustness; Snipping; Trimming;
D O I
10.1007/s11222-013-9410-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the concept of snipping, complementing that of trimming, in robust cluster analysis. An observation is snipped when some of its dimensions are discarded, but the remaining are used for clustering and estimation. Snipped k-means is performed through a probabilistic optimization algorithm which is guaranteed to converge to the global optimum. We show global robustness properties of our snipped k-means procedure. Simulations and a real data application to optical recognition of handwritten digits are used to illustrate and compare the approach.
引用
收藏
页码:907 / 919
页数:13
相关论文
共 50 条
  • [41] Locality Preserving Based K-Means Clustering
    Yang, Xiaohuan
    Wang, Xiaoming
    Tian, Yong
    Du, Yajun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 86 - 95
  • [42] RSS Fingerprinting Dataset Size Reduction Using Feature-Wise Adaptive k-Means Clustering
    Klus, Lucie
    Quezada-Gaibor, Darwin
    Torres-Sospedra, Joaquin
    Lohan, Elena Simona
    Granell, Carlos
    Nurmi, Jari
    2020 12TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT 2020), 2020, : 195 - 200
  • [43] Clustering Algorithm Combining CPSO with K-Means
    Gu, Chunqin
    Tao, Qian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 749 - 755
  • [44] K-means clustering algorithm in projected spaces
    Nasser, Alissar
    Hamad, Denis
    Nasr, Chaiban
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 1260 - 1265
  • [45] Robust and sparse k-means clustering for high-dimensional data
    Brodinova, Sarka
    Filzmoser, Peter
    Ortner, Thomas
    Breiteneder, Christian
    Rohm, Maia
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) : 905 - 932
  • [46] Strong Consistency of Reduced K-means Clustering
    Terada, Yoshikazu
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 913 - 931
  • [47] Stable Initialization Scheme for K-Means Clustering
    XU Junling1
    2. State Key Laboratory of Software Engineering
    3. Department of Computer
    Wuhan University Journal of Natural Sciences, 2009, 14 (01) : 24 - 28
  • [48] Mahalanobis Distance Based K-Means Clustering
    Brown, Paul O.
    Chiang, Meng Ching
    Guo, Shiqing
    Jin, Yingzi
    Leung, Carson K.
    Murray, Evan L.
    Pazdor, Adam G. M.
    Cuzzocrea, Alfredo
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 256 - 262
  • [49] K-means*: Clustering by gradual data transformation
    Malinen, Mikko I.
    Mariescu-Istodor, Radu
    Franti, Pasi
    PATTERN RECOGNITION, 2014, 47 (10) : 3376 - 3386
  • [50] RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm
    Kondo, Yumi
    Salibian-Barrera, Matias
    Zamar, Ruben
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (05): : 1 - 26