Snipping for robust k-means clustering under component-wise contamination

被引:16
|
作者
Farcomeni, Alessio [1 ]
机构
[1] Univ Roma La Sapienza, Dept Publ Hlth & Infect Dis, I-00185 Rome, Italy
关键词
Clustering; k-Means; Outliers; Robustness; Snipping; Trimming;
D O I
10.1007/s11222-013-9410-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the concept of snipping, complementing that of trimming, in robust cluster analysis. An observation is snipped when some of its dimensions are discarded, but the remaining are used for clustering and estimation. Snipped k-means is performed through a probabilistic optimization algorithm which is guaranteed to converge to the global optimum. We show global robustness properties of our snipped k-means procedure. Simulations and a real data application to optical recognition of handwritten digits are used to illustrate and compare the approach.
引用
收藏
页码:907 / 919
页数:13
相关论文
共 50 条
  • [1] Snipping for robust k-means clustering under component-wise contamination
    Alessio Farcomeni
    Statistics and Computing, 2014, 24 : 907 - 919
  • [2] ROBUST k-MEANS CLUSTERING FOR DISTRIBUTIONS WITH TWO MOMENTS
    Klochkov, Yegor
    Kroshnin, Alexey
    Zhivotovskiy, Nikita
    ANNALS OF STATISTICS, 2021, 49 (04) : 2206 - 2230
  • [3] Robust trimmed k-means
    Dorabiala, Olga
    Kutz, J. Nathan
    Aravkin, Aleksandr Y.
    PATTERN RECOGNITION LETTERS, 2022, 161 : 9 - 16
  • [4] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [5] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [6] t-k-means: A ROBUST AND STABLE k-means VARIANT
    Li, Yiming
    Zhang, Yang
    Tang, Qingtao
    Huang, Weipeng
    Jiang, Yong
    Xia, Shu-Tao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3120 - 3124
  • [7] K-means-sharp: modified centroid update for outlier-robust k-means clustering
    Olukanmi, Peter O.
    Twala, Blhekisipho
    2017 PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA AND ROBOTICS AND MECHATRONICS (PRASA-ROBMECH), 2017, : 14 - 19
  • [8] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [9] Family of K-Means Clustering for Robust Mean-Variance Portfolio Selection: A Comparison of K-Medoids, K-Means, and Fuzzy C-Means
    Gubu, La
    Cahyono, Edi
    Budiman, Herdi
    Djafar, Muh. Kabil
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2024, 23 (03): : 342 - 356
  • [10] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249