A primal-dual interior point method for nonlinear optimization over second-order cones

被引:28
作者
Yamashita, Hiroshi [2 ]
Yabe, Hiroshi [1 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Fac Sci, Shinjuku Ku, Tokyo, Japan
[2] Math Syst Inc, Shinjuku Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
constrained optimization; nonlinear SOCP; primal-dual interior point method; barrier penalty function; potential function; global convergence; CONSTRAINED OPTIMIZATION; ALGORITHMS; CONVERGENCE;
D O I
10.1080/10556780902752447
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we are concerned with nonlinear minimization problems with second-order cone constraints. A primal-dual interior point method that uses a commutative class of search directions is considered. We propose a new primal-dual merit function by combining the barrier penalty function and the potential function within the framework of the line search strategy, and show the global convergence property of our method.
引用
收藏
页码:407 / 426
页数:20
相关论文
共 15 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI DOI 10.1017/CBO9780511804441
[3]   A global algorithm for nonlinear semidefinite programming [J].
Correa, R ;
Ramirez, HC .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :303-318
[4]   Robust control via sequential semidefinite programming [J].
Fares, B ;
Noll, D ;
Apkarian, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1791-1820
[5]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[6]   Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling [J].
Freund, Roland W. ;
Jarre, Florian ;
Vogelbusch, Christoph H. .
MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) :581-611
[7]   An SQP-type algorithm for nonlinear second-order cone programs [J].
Kato, Hirokazu ;
Fukushima, Masao .
OPTIMIZATION LETTERS, 2007, 1 (02) :129-144
[8]   PENNON: A code for convex nonlinear and semidefinite programming [J].
Kocvara, M ;
Stingl, M .
OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (03) :317-333
[9]   Applications of second-order cone programming [J].
Lobo, MS ;
Vandenberghe, L ;
Boyd, S ;
Lebret, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) :193-228
[10]   A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming [J].
Monteiro, RDC ;
Zhang, Y .
MATHEMATICAL PROGRAMMING, 1998, 81 (03) :281-299