Efficient hybrid 3D system calibration for magnetic particle imaging systems using a dedicated device

被引:18
作者
von Gladiss, Anselm [1 ]
Graeser, Matthias [2 ,3 ]
Behrends, Andre [1 ]
Chen, Xin [1 ]
Buzug, Thorsten M. [1 ,4 ]
机构
[1] Univ Lubeck, Inst Med Engn, D-23562 Lubeck, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Sect Biomed Imaging, D-22529 Hamburg, Germany
[3] Hamburg Univ Technol, Inst Biomed Imaging, D-21073 Hamburg, Germany
[4] Fraunhofer Res Inst Individualized & Cell Based M, D-23562 Lubeck, Germany
关键词
RECONSTRUCTION;
D O I
10.1038/s41598-020-75122-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image reconstruction in magnetic particle imaging is often performed using a system matrix based approach. The acquisition of a system matrix is a time-consuming calibration which may take several weeks and thus, is not feasible for a clinical device. Due to hardware characteristics of the receive chain, a system matrix may not even be used in similar devices but has to be acquired for each imager. In this work, a dedicated device is used for measuring a hybrid system matrix. It is shown that the measurement time of a 3D system matrix is reduced by 96%. The transfer function of the receive chains is measured, which allows the use of the same system matrix in multiple devices. Equivalent image reconstruction results are reached using the hybrid system matrix. Furthermore, the inhomogeneous sensitivity profile of receive coils is successfully applied to a hybrid system matrix. It is shown that each aspect of signal acquisition in magnetic particle imaging can be taken into account using hybrid system matrices. It is favourable to use a hybrid system matrix for image reconstruction in terms of measurement time, signal-to-noise ratio and discretisation.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].
Biederer, S. ;
Knopp, T. ;
Sattel, T. F. ;
Luedtke-Buzug, K. ;
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. ;
Buzug, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
[2]  
Boberg M., 2018, INT WORKSH MAGN PART, P159
[3]   Generalized MPI Multi-Patch Reconstruction Using Clusters of Similar System Matrices [J].
Boberg, Marija ;
Knopp, Tobias ;
Szwargulski, Patryk ;
Moeddel, Martin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) :1347-1358
[4]  
Chen X., 2018, International Journal on Magnetic Particle Imaging, V4, DOI DOI 10.18416/IJMPI.2018.1810001
[5]   Multicore Magnetic Nanoparticles for Magnetic Particle Imaging [J].
Eberbeck, Dietmar ;
Dennis, Cindi L. ;
Huls, Natalie F. ;
Krycka, Kathryn L. ;
Gruettner, Cordula ;
Westphal, Fritz .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) :269-274
[6]   Magnetic Particle Imaging With Tailored Iron Oxide Nanoparticle Tracers [J].
Ferguson, R. Matthew ;
Khandhar, Amit P. ;
Kemp, Scott J. ;
Arami, Hamed ;
Saritas, Emine U. ;
Croft, Laura R. ;
Konkle, Justin ;
Goodwill, Patrick W. ;
Halkola, Aleksi ;
Rahmer, Juergen ;
Borgert, Joern ;
Conolly, Steven M. ;
Krishnan, Kannan M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (05) :1077-1084
[7]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[8]   Multidimensional X-Space Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (09) :1581-1590
[9]   2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner [J].
Graefe, Ksenija ;
von Gladiss, Anselm ;
Bringout, Gael ;
Ahlborg, Mandy ;
Buzug, Thorsten M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :1056-1065
[10]   Human-sized magnetic particle imaging for brain applications [J].
Graeser, M. ;
Thieben, F. ;
Szwargulski, P. ;
Werner, F. ;
Gdaniec, N. ;
Boberg, M. ;
Griese, F. ;
Moeddel, M. ;
Ludewig, P. ;
van de Ven, D. ;
Weber, O. M. ;
Woywode, O. ;
Gleich, B. ;
Knopp, T. .
NATURE COMMUNICATIONS, 2019, 10 (1)