Reduced-Order Models for Electromagnetic Scattering Problems

被引:44
作者
Hochman, Amit [1 ]
Villena, Jorge Fernandez [1 ]
Polimeridis, Athanasios G. [1 ]
Silveira, Luis Miguel [2 ,3 ]
White, Jacob K. [1 ]
Daniel, Luca [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA
[2] Inst Engn Sistemas & Computadores Invest & Desenv, P-1000029 Lisbon, Portugal
[3] Univ Tecn Lisboa, IST, P-1000049 Lisbon, Portugal
基金
瑞士国家科学基金会;
关键词
Electromagnetic scattering; integral equations; modeling; APPROXIMATION; REDUCTION; ALGORITHM;
D O I
10.1109/TAP.2014.2314734
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider model-order reduction of systems occurring in electromagnetic scattering problems, where the inputs are current distributions operating in the presence of a scatterer, and the outputs are their corresponding scattered fields. Using the singular-value decomposition (SVD), we formally derive minimal-order models for such systems. We then use a discrete empirical interpolation method (DEIM) to render the minimal-order models more suitable to numerical computation. These models consist of a set of elementary sources and a set of observation points, both interior to the scatterer, and located automatically by the DEIM. A single matrix then maps the values of any incident field at the observation points to the amplitudes of the sources needed to approximate the corresponding scattered field. Similar to a Green's function, these models can be used to quickly analyze the interaction of the scatterer with other nearby scatterers or antennas.
引用
收藏
页码:3150 / 3162
页数:13
相关论文
共 26 条
[1]  
ANTOULAS A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
[2]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[3]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[4]   Parameterized model order reduction of nonlinear dynamical systems [J].
Bond, B ;
Daniel, L .
ICCAD-2005: INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, DIGEST OF TECHNICAL PAPERS, 2005, :487-494
[5]   Compact Modeling of Nonlinear Analog Circuits Using System Identification via Semidefinite Programming and Incremental Stability Certification [J].
Bond, Bradley N. ;
Mahmood, Zohaib ;
Li, Yan ;
Sredojevic, Ranko ;
Megretski, Alexandre ;
Stojanovic, Vladimir ;
Avniel, Yehuda ;
Daniel, Luca .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2010, 29 (08) :1149-1162
[6]   FaIMS: A fast algorithm for the inverse medium problem with multiple frequencies and multiple sources for the scalar Helmholtz equation [J].
Chaillat, Stephanie ;
Biros, George .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (12) :4403-4421
[7]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[8]   The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations [J].
Christ, Andreas ;
Kainz, Wolfgang ;
Hahn, Eckhart G. ;
Honegger, Katharina ;
Zefferer, Marcel ;
Neufeld, Esra ;
Rascher, Wolfgang ;
Janka, Rolf ;
Bautz, Werner ;
Chen, Ji ;
Kiefer, Berthold ;
Schmitt, Peter ;
Hollenbach, Hans-Peter ;
Shen, Jianxiang ;
Oberle, Michael ;
Szczerba, Dominik ;
Kam, Anthony ;
Guag, Joshua W. ;
Kuster, Niels .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (02) :N23-N38
[9]  
Crocco Lorenzo, 2007, J Opt Soc Am A Opt Image Sci Vis, V24, pA12, DOI 10.1364/JOSAA.24.000A12
[10]   Adaptive CAD-model building algorithm for general planar microwave structures [J].
De Geest, J ;
Dhaene, T ;
Faché, N ;
De Zutter, D .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (09) :1801-1809